2025-05-22 23:16:33 -07:00

754 lines
25 KiB
Python

# Copyright 2021 Piotr Żelasko
# Copyright 2022 Xiaomi Corporation (Author: Mingshuang Luo)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import inspect
import logging
from functools import lru_cache
from pathlib import Path
from typing import Any, Dict, Optional
import torch
from datasets import interleave_datasets, load_dataset
from lhotse import (
CutSet,
WhisperFbank,
WhisperFbankConfig,
load_manifest,
load_manifest_lazy,
)
from lhotse.dataset import ( # noqa F401 for PrecomputedFeatures
CutConcatenate,
CutMix,
DynamicBucketingSampler,
K2SpeechRecognitionDataset,
PerturbSpeed,
PrecomputedFeatures,
SimpleCutSampler,
SpecAugment,
)
from lhotse.dataset.input_strategies import ( # noqa F401 For AudioSamples
AudioSamples,
OnTheFlyFeatures,
)
from lhotse.utils import fix_random_seed
from torch.utils.data import DataLoader
from utils import get_local_rank, str2bool
class _SeedWorkers:
def __init__(self, seed: int):
self.seed = seed
def __call__(self, worker_id: int):
fix_random_seed(self.seed + worker_id)
class AsrDataModule:
"""
DataModule for k2 ASR experiments.
It assumes there is always one train and valid dataloader,
but there can be multiple test dataloaders (e.g. LibriSpeech test-clean
and test-other).
It contains all the common data pipeline modules used in ASR
experiments, e.g.:
- dynamic batch size,
- bucketing samplers,
- cut concatenation,
- augmentation,
- on-the-fly feature extraction
This class should be derived for specific corpora used in ASR tasks.
"""
def __init__(self, args: argparse.Namespace):
self.args = args
@classmethod
def add_arguments(cls, parser: argparse.ArgumentParser):
group = parser.add_argument_group(
title="ASR data related options",
description="These options are used for the preparation of "
"PyTorch DataLoaders from Lhotse CutSet's -- they control the "
"effective batch sizes, sampling strategies, applied data "
"augmentations, etc.",
)
group.add_argument(
"--manifest-dir",
type=Path,
default=Path("data/fbank"),
help="Path to directory with train/valid/test cuts.",
)
group.add_argument(
"--max-duration",
type=int,
default=300.0,
help="Maximum pooled recordings duration (seconds) in a "
"single batch. You can reduce it if it causes CUDA OOM.",
)
group.add_argument(
"--bucketing-sampler",
type=str2bool,
default=True,
help="When enabled, the batches will come from buckets of "
"similar duration (saves padding frames).",
)
group.add_argument(
"--num-buckets",
type=int,
default=30,
help="The number of buckets for the DynamicBucketingSampler"
"(you might want to increase it for larger datasets).",
)
group.add_argument(
"--on-the-fly-feats",
type=str2bool,
default=False,
help="When enabled, use on-the-fly cut mixing and feature "
"extraction. Will drop existing precomputed feature manifests "
"if available.",
)
group.add_argument(
"--on-the-fly-speed-perturb",
type=str2bool,
default=True,
help="When enabled, use on-the-fly speed perturbation. "
"Will drop existing precomputed feature manifests "
"if available.",
)
group.add_argument(
"--shuffle",
type=str2bool,
default=True,
help="When enabled (=default), the examples will be "
"shuffled for each epoch.",
)
group.add_argument(
"--drop-last",
type=str2bool,
default=True,
help="Whether to drop last batch. Used by sampler.",
)
group.add_argument(
"--return-cuts",
type=str2bool,
default=True,
help="When enabled, each batch will have the "
"field: batch['supervisions']['cut'] with the cuts that "
"were used to construct it.",
)
group.add_argument(
"--num-workers",
type=int,
default=4,
help="The number of training dataloader workers that "
"collect the batches.",
)
group.add_argument(
"--enable-spec-aug",
type=str2bool,
default=True,
help="When enabled, use SpecAugment for training dataset.",
)
group.add_argument(
"--spec-aug-time-warp-factor",
type=int,
default=80,
help="Used only when --enable-spec-aug is True. "
"It specifies the factor for time warping in SpecAugment. "
"Larger values mean more warping. "
"A value less than 1 means to disable time warp.",
)
group.add_argument(
"--enable-musan",
type=str2bool,
default=True,
help="When enabled, select noise from MUSAN and mix it"
"with training dataset. ",
)
group.add_argument(
"--input-strategy",
type=str,
default="PrecomputedFeatures",
help="AudioSamples or PrecomputedFeatures",
)
group.add_argument(
"--huggingface-dataset-path-or-name",
type=str,
default=None,
help="The path or name of the Huggingface dataset",
)
group.add_argument(
"--audio-key",
type=str,
default=None,
help="The key in the Huggingface dataset containing the audio data",
)
group.add_argument(
"--text-key",
type=str,
default=None,
help="The key in the Huggingface dataset containing the text data",
)
def train_dataloaders(
self,
cuts_train: CutSet,
sampler_state_dict: Optional[Dict[str, Any]] = None,
) -> DataLoader:
"""
Args:
cuts_train:
CutSet for training.
sampler_state_dict:
The state dict for the training sampler.
"""
transforms = []
if self.args.enable_musan:
logging.info("Enable MUSAN")
logging.info("About to get Musan cuts")
cuts_musan = load_manifest(self.args.manifest_dir / "musan_cuts.jsonl.gz")
transforms.append(
CutMix(cuts=cuts_musan, p=0.5, snr=(10, 20), preserve_id=True)
)
else:
logging.info("Disable MUSAN")
if self.args.on_the_fly_speed_perturb and self.args.on_the_fly_feats:
transforms = [PerturbSpeed(factors=[0.9, 1.1], p=2 / 3)] + transforms
input_transforms = []
if self.args.enable_spec_aug:
logging.info("Enable SpecAugment")
logging.info(f"Time warp factor: {self.args.spec_aug_time_warp_factor}")
# Set the value of num_frame_masks according to Lhotse's version.
# In different Lhotse's versions, the default of num_frame_masks is
# different.
num_frame_masks = 10
num_frame_masks_parameter = inspect.signature(
SpecAugment.__init__
).parameters["num_frame_masks"]
if num_frame_masks_parameter.default == 1:
num_frame_masks = 2
logging.info(f"Num frame mask: {num_frame_masks}")
input_transforms.append(
SpecAugment(
time_warp_factor=self.args.spec_aug_time_warp_factor,
num_frame_masks=num_frame_masks,
features_mask_size=27,
num_feature_masks=2,
frames_mask_size=100,
)
)
else:
logging.info("Disable SpecAugment")
logging.info("About to create train dataset")
rank = get_local_rank()
train = K2SpeechRecognitionDataset(
input_strategy=OnTheFlyFeatures(
WhisperFbank(WhisperFbankConfig(num_filters=80, device=f"cuda:{rank}"))
)
if self.args.on_the_fly_feats
else eval(self.args.input_strategy)(),
cut_transforms=transforms,
input_transforms=input_transforms,
return_cuts=self.args.return_cuts,
)
if self.args.bucketing_sampler:
logging.info("Using DynamicBucketingSampler.")
train_sampler = DynamicBucketingSampler(
cuts_train,
max_duration=self.args.max_duration,
shuffle=self.args.shuffle,
num_buckets=self.args.num_buckets,
buffer_size=self.args.num_buckets * 1000,
drop_last=self.args.drop_last,
)
else:
logging.info("Using SimpleCutSampler.")
train_sampler = SimpleCutSampler(
cuts_train,
max_duration=self.args.max_duration,
shuffle=self.args.shuffle,
)
logging.info("About to create train dataloader")
if sampler_state_dict is not None:
logging.info("Loading sampler state dict")
train_sampler.load_state_dict(sampler_state_dict)
# 'seed' is derived from the current random state, which will have
# previously been set in the main process.
seed = torch.randint(0, 100000, ()).item()
worker_init_fn = _SeedWorkers(seed)
train_dl = DataLoader(
train,
sampler=train_sampler,
batch_size=None,
num_workers=self.args.num_workers,
persistent_workers=True if self.args.num_workers > 0 else False,
pin_memory=True,
worker_init_fn=worker_init_fn,
)
return train_dl
def valid_dataloaders(self, cuts_valid: CutSet) -> DataLoader:
"""
Args:
cuts_valid:
CutSet for validation.
"""
logging.info("About to create dev dataset")
rank = get_local_rank()
validate = K2SpeechRecognitionDataset(
input_strategy=OnTheFlyFeatures(
WhisperFbank(WhisperFbankConfig(num_filters=80, device=f"cuda:{rank}"))
)
if self.args.on_the_fly_feats
else eval(self.args.input_strategy)(),
return_cuts=self.args.return_cuts,
)
if self.args.bucketing_sampler:
valid_sampler = DynamicBucketingSampler(
cuts_valid,
max_duration=self.args.max_duration,
shuffle=False,
)
else:
valid_sampler = SimpleCutSampler(
cuts_valid,
max_duration=self.args.max_duration,
shuffle=False,
)
logging.info("About to create dev dataloader")
valid_num_workers = 1
valid_dl = DataLoader(
validate,
sampler=valid_sampler,
batch_size=None,
num_workers=valid_num_workers,
persistent_workers=True if valid_num_workers > 0 else False,
)
return valid_dl
def test_dataloaders(self, cuts: CutSet) -> DataLoader:
logging.debug("About to create test dataset")
test = K2SpeechRecognitionDataset(
input_strategy=OnTheFlyFeatures(
WhisperFbank(WhisperFbankConfig(num_filters=80, device="cpu"))
)
if self.args.on_the_fly_feats
else eval(self.args.input_strategy)(),
return_cuts=self.args.return_cuts,
)
sampler = DynamicBucketingSampler(
cuts,
max_duration=self.args.max_duration,
shuffle=False,
)
logging.debug("About to create test dataloader")
test_dl = DataLoader(
test,
batch_size=None,
sampler=sampler,
num_workers=self.args.num_workers,
)
return test_dl
@lru_cache()
def test_cuts_belle(self) -> CutSet:
logging.info("About to get test cuts")
return {
"test": load_manifest_lazy(
self.args.manifest_dir / "cuts_belle_test.jsonl.gz"
)
}
@lru_cache()
def dev_cuts_belle(self) -> CutSet:
logging.info("About to get test cuts")
return load_manifest_lazy(
self.args.manifest_dir / "cuts_belle_test.jsonl.gz"
)
@lru_cache()
def train_cuts_belle(self) -> CutSet:
logging.info("About to get train cuts")
slam_omni_zh_cuts = load_manifest_lazy(
self.args.manifest_dir / "cuts_belle_train.jsonl.gz"
)
return slam_omni_zh_cuts
@lru_cache()
def train_cuts_en_vocalnet(self) -> CutSet:
logging.info("About to get train cuts")
VoiceAssistant_cuts = load_manifest_lazy(
self.args.manifest_dir / "cuts_voice_assistant_00001-00049.jsonl.gz"
)
ultrachat_cuts = load_manifest_lazy(
self.args.manifest_dir / "cuts_ultrachat_train.jsonl.gz"
)
VoiceAssistant_cuts = VoiceAssistant_cuts.resample(16000)
ultrachat_cuts = ultrachat_cuts.resample(16000)
return CutSet.mux(
VoiceAssistant_cuts,
ultrachat_cuts,
weights=[
len(VoiceAssistant_cuts),
len(ultrachat_cuts),
],
)
@lru_cache()
def valid_cuts_en_vocalnet(self) -> CutSet:
logging.info("About to get valid cuts")
VoiceAssistant_cuts = load_manifest_lazy(
self.args.manifest_dir / "cuts_voice_assistant.00000.jsonl.gz"
)
VoiceAssistant_cuts = VoiceAssistant_cuts.resample(16000)
return VoiceAssistant_cuts
@lru_cache()
def test_cuts_en_vocalnet(self) -> CutSet:
logging.info("About to get test cuts")
VoiceAssistant_cuts = load_manifest_lazy(
self.args.manifest_dir / "cuts_voice_assistant_small.00000.jsonl.gz"
)
VoiceAssistant_cuts = VoiceAssistant_cuts.resample(16000)
return {"test": VoiceAssistant_cuts}
@lru_cache()
def train_cuts_ultravox(self) -> CutSet:
logging.info("About to get train cuts")
if self.args.huggingface_dataset_path_or_name is not None:
librispeech_path = (
self.args.huggingface_dataset_path_or_name + "/librispeech_asr"
)
people_speech_path = (
self.args.huggingface_dataset_path_or_name + "/peoples_speech"
)
gigaspeech_path = self.args.huggingface_dataset_path_or_name + "/gigaspeech"
else:
librispeech_path = "fixie-ai/librispeech_asr"
people_speech_path = "fixie-ai/peoples_speech"
gigaspeech_path = "fixie-ai/gigaspeech"
# 148_688
librispeech_other = load_dataset(
librispeech_path, "other", split="train.500", streaming=True
)
# 104_014
librispeech_clean_360 = load_dataset(
librispeech_path, "clean", split="train.360", streaming=True
)
# 28_539
librispeech_clean_100 = load_dataset(
librispeech_path, "clean", split="train.100", streaming=True
)
# 1_501_271
people_speech_clean = load_dataset(
people_speech_path, "clean", split="train", streaming=True
)
# 548_000
people_speech_dirty_sa = load_dataset(
people_speech_path, "dirty_sa", split="train", streaming=True
)
# 8_266_422
gigaspeech = load_dataset(
gigaspeech_path, "xl-empty-audio-removed", split="train", streaming=True
)
librispeech_clean_100_cuts = CutSet.from_huggingface_dataset(
librispeech_clean_100,
audio_key="audio",
text_key="text",
)
librispeech_other_cuts = CutSet.from_huggingface_dataset(
librispeech_other,
audio_key="audio",
text_key="text",
)
librispeech_clean_360_cuts = CutSet.from_huggingface_dataset(
librispeech_clean_360,
audio_key="audio",
text_key="text",
)
gigaspeech_cuts = CutSet.from_huggingface_dataset(
gigaspeech, audio_key="audio", text_key="text"
)
people_speech_clean_cuts = CutSet.from_huggingface_dataset(
people_speech_clean,
audio_key="audio",
text_key="text",
)
people_speech_dirty_sa_cuts = CutSet.from_huggingface_dataset(
people_speech_dirty_sa,
audio_key="audio",
text_key="text",
)
return CutSet.mux(
librispeech_clean_100_cuts,
librispeech_clean_360_cuts,
librispeech_other_cuts,
gigaspeech_cuts,
people_speech_clean_cuts,
people_speech_dirty_sa_cuts,
weights=[
28539,
104014,
148688,
8266422,
1501271,
548000,
],
)
@lru_cache()
def valid_cuts_ultravox(self) -> CutSet:
logging.info("About to get valid cuts")
librispeech_path = "fixie-ai/librispeech_asr"
librispeech_clean_valid = load_dataset(
librispeech_path, "clean", split="validation", streaming=True
)
librispeech_clean_valid_cuts = CutSet.from_huggingface_dataset(
librispeech_clean_valid,
audio_key="audio",
text_key="text",
)
return librispeech_clean_valid_cuts
@lru_cache()
def train_cuts_librispeech(self) -> CutSet:
logging.info("About to get train cuts")
if self.args.huggingface_dataset_path_or_name is not None:
librispeech_path = self.args.huggingface_dataset_path_or_name + "/librispeech_asr"
else:
librispeech_path = "fixie-ai/librispeech_asr"
# 148_688
librispeech_other = load_dataset(
librispeech_path, "other", split="train.500", streaming=True
)
# 104_014
librispeech_clean_360 = load_dataset(
librispeech_path, "clean", split="train.360", streaming=True
)
# 28_539
librispeech_clean_100 = load_dataset(
librispeech_path, "clean", split="train.100", streaming=True
)
librispeech_clean_100_cuts = CutSet.from_huggingface_dataset(
librispeech_clean_100,
audio_key="audio",
text_key="text",
)
librispeech_other_cuts = CutSet.from_huggingface_dataset(
librispeech_other,
audio_key="audio",
text_key="text",
)
librispeech_clean_360_cuts = CutSet.from_huggingface_dataset(
librispeech_clean_360,
audio_key="audio",
text_key="text",
)
return CutSet.mux(
librispeech_clean_100_cuts,
librispeech_clean_360_cuts,
librispeech_other_cuts,
weights=[
28539,
104014,
148688,
],
)
@lru_cache()
def train_cuts_gigaspeech(self) -> CutSet:
logging.info("About to get train cuts")
gigaspeech_path = "fixie-ai/gigaspeech"
gigaspeech = load_dataset(
gigaspeech_path, "xl-empty-audio-removed", split="train", streaming=True
)
gigaspeech_cuts = CutSet.from_huggingface_dataset(
gigaspeech, audio_key="audio", text_key="text"
)
return gigaspeech_cuts
@lru_cache()
def train_cuts_instruct_s2s(self) -> CutSet:
logging.info("About to get train cuts")
if self.args.huggingface_dataset_path_or_name is not None:
data_path = self.args.huggingface_dataset_path_or_name + "/InstructS2S-200K"
else:
data_path = "yuekai/InstructS2S-200K"
# 148_688
instruct_s2s_train = load_dataset(
data_path, split="train", streaming=True
)
instruct_s2s_train_cuts = CutSet.from_huggingface_dataset(
instruct_s2s_train,
audio_key="question_audio",
text_key="answer",
)
instruct_s2s_train_cuts = instruct_s2s_train_cuts.resample(16000)
return instruct_s2s_train_cuts
@lru_cache()
def train_cuts_en_speech2speech(self) -> CutSet:
logging.info("About to get train cuts")
VoiceAssistant_cuts = load_manifest_lazy(
self.args.manifest_dir / "cuts_voice_assistant_00001-00049.jsonl.gz"
)
ultrachat_cuts = load_manifest_lazy(
self.args.manifest_dir / "cuts_ultrachat_train.jsonl.gz"
)
if self.args.huggingface_dataset_path_or_name is not None:
data_path = self.args.huggingface_dataset_path_or_name + "/InstructS2S-200K"
else:
data_path = "yuekai/InstructS2S-200K"
# 148_688
instruct_s2s_train = load_dataset(
data_path, split="train", streaming=True
)
instruct_s2s_train_cuts = CutSet.from_huggingface_dataset(
instruct_s2s_train,
audio_key="question_audio",
text_key="answer",
)
instruct_s2s_train_cuts = instruct_s2s_train_cuts.resample(16000)
return CutSet.mux(
VoiceAssistant_cuts,
ultrachat_cuts,
instruct_s2s_train_cuts,
weights=[
len(VoiceAssistant_cuts),
len(ultrachat_cuts),
423_000,
],
)
@lru_cache()
def train_cuts_en_speech2speech_librispeech(self) -> CutSet:
logging.info("About to get train cuts")
VoiceAssistant_cuts = load_manifest_lazy(
self.args.manifest_dir / "cuts_voice_assistant_00001-00049.jsonl.gz"
)
ultrachat_cuts = load_manifest_lazy(
self.args.manifest_dir / "cuts_ultrachat_train.jsonl.gz"
)
if self.args.huggingface_dataset_path_or_name is not None:
data_path = self.args.huggingface_dataset_path_or_name + "/InstructS2S-200K"
else:
data_path = "yuekai/InstructS2S-200K"
# 148_688
instruct_s2s_train = load_dataset(
data_path, split="train", streaming=True
)
instruct_s2s_train_cuts = CutSet.from_huggingface_dataset(
instruct_s2s_train,
audio_key="question_audio",
text_key="answer",
)
instruct_s2s_train_cuts = instruct_s2s_train_cuts.resample(16000)
if self.args.huggingface_dataset_path_or_name is not None:
librispeech_path = self.args.huggingface_dataset_path_or_name + "/librispeech_asr"
else:
librispeech_path = "fixie-ai/librispeech_asr"
# 148_688
librispeech_other = load_dataset(
librispeech_path, "other", split="train.500", streaming=True
)
# 104_014
librispeech_clean_360 = load_dataset(
librispeech_path, "clean", split="train.360", streaming=True
)
# 28_539
librispeech_clean_100 = load_dataset(
librispeech_path, "clean", split="train.100", streaming=True
)
librispeech_clean_100_cuts = CutSet.from_huggingface_dataset(
librispeech_clean_100,
audio_key="audio",
text_key="text",
)
librispeech_other_cuts = CutSet.from_huggingface_dataset(
librispeech_other,
audio_key="audio",
text_key="text",
)
librispeech_clean_360_cuts = CutSet.from_huggingface_dataset(
librispeech_clean_360,
audio_key="audio",
text_key="text",
)
return CutSet.mux(
librispeech_other_cuts,
VoiceAssistant_cuts,
ultrachat_cuts,
librispeech_clean_360_cuts,
instruct_s2s_train_cuts,
librispeech_clean_100_cuts,
weights=[
148688,
len(VoiceAssistant_cuts),
len(ultrachat_cuts),
104014,
423_000,
28539,
],
)