mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 01:52:41 +00:00
* add f5 * add infer * add dit * add README * update pretrained checkpoint usage --------- Co-authored-by: yuekaiz <yuekaiz@h20-5.cm.cluster> Co-authored-by: yuekaiz <yuekaiz@l20-3.cm.cluster> Co-authored-by: yuekaiz <yuekaiz@h20-6.cm.cluster> Co-authored-by: zr_jin <peter.jin.cn@gmail.com>
207 lines
6.4 KiB
Python
207 lines
6.4 KiB
Python
from __future__ import annotations
|
||
|
||
import os
|
||
import random
|
||
from collections import defaultdict
|
||
from importlib.resources import files
|
||
|
||
import jieba
|
||
import torch
|
||
from pypinyin import Style, lazy_pinyin
|
||
from torch.nn.utils.rnn import pad_sequence
|
||
|
||
# seed everything
|
||
|
||
|
||
def seed_everything(seed=0):
|
||
random.seed(seed)
|
||
os.environ["PYTHONHASHSEED"] = str(seed)
|
||
torch.manual_seed(seed)
|
||
torch.cuda.manual_seed(seed)
|
||
torch.cuda.manual_seed_all(seed)
|
||
torch.backends.cudnn.deterministic = True
|
||
torch.backends.cudnn.benchmark = False
|
||
|
||
|
||
# helpers
|
||
|
||
|
||
def exists(v):
|
||
return v is not None
|
||
|
||
|
||
def default(v, d):
|
||
return v if exists(v) else d
|
||
|
||
|
||
# tensor helpers
|
||
|
||
|
||
def lens_to_mask(
|
||
t: int["b"], length: int | None = None # noqa: F722 F821
|
||
) -> bool["b n"]: # noqa: F722 F821
|
||
if not exists(length):
|
||
length = t.amax()
|
||
|
||
seq = torch.arange(length, device=t.device)
|
||
return seq[None, :] < t[:, None]
|
||
|
||
|
||
def mask_from_start_end_indices(
|
||
seq_len: int["b"], start: int["b"], end: int["b"] # noqa: F722 F821
|
||
):
|
||
max_seq_len = seq_len.max().item()
|
||
seq = torch.arange(max_seq_len, device=start.device).long()
|
||
start_mask = seq[None, :] >= start[:, None]
|
||
end_mask = seq[None, :] < end[:, None]
|
||
return start_mask & end_mask
|
||
|
||
|
||
def mask_from_frac_lengths(
|
||
seq_len: int["b"], frac_lengths: float["b"] # noqa: F722 F821
|
||
):
|
||
lengths = (frac_lengths * seq_len).long()
|
||
max_start = seq_len - lengths
|
||
|
||
rand = torch.rand_like(frac_lengths)
|
||
start = (max_start * rand).long().clamp(min=0)
|
||
end = start + lengths
|
||
|
||
return mask_from_start_end_indices(seq_len, start, end)
|
||
|
||
|
||
def maybe_masked_mean(
|
||
t: float["b n d"], mask: bool["b n"] = None # noqa: F722 F821
|
||
) -> float["b d"]: # noqa: F722 F821
|
||
if not exists(mask):
|
||
return t.mean(dim=1)
|
||
|
||
t = torch.where(mask[:, :, None], t, torch.tensor(0.0, device=t.device))
|
||
num = t.sum(dim=1)
|
||
den = mask.float().sum(dim=1)
|
||
|
||
return num / den.clamp(min=1.0)
|
||
|
||
|
||
# simple utf-8 tokenizer, since paper went character based
|
||
def list_str_to_tensor(text: list[str], padding_value=-1) -> int["b nt"]: # noqa: F722
|
||
list_tensors = [torch.tensor([*bytes(t, "UTF-8")]) for t in text] # ByT5 style
|
||
text = pad_sequence(list_tensors, padding_value=padding_value, batch_first=True)
|
||
return text
|
||
|
||
|
||
# char tokenizer, based on custom dataset's extracted .txt file
|
||
def list_str_to_idx(
|
||
text: list[str] | list[list[str]],
|
||
vocab_char_map: dict[str, int], # {char: idx}
|
||
padding_value=-1,
|
||
) -> int["b nt"]: # noqa: F722
|
||
list_idx_tensors = [
|
||
torch.tensor([vocab_char_map.get(c, 0) for c in t]) for t in text
|
||
] # pinyin or char style
|
||
text = pad_sequence(list_idx_tensors, padding_value=padding_value, batch_first=True)
|
||
return text
|
||
|
||
|
||
# Get tokenizer
|
||
|
||
|
||
def get_tokenizer(dataset_name, tokenizer: str = "pinyin"):
|
||
"""
|
||
tokenizer - "pinyin" do g2p for only chinese characters, need .txt vocab_file
|
||
- "char" for char-wise tokenizer, need .txt vocab_file
|
||
- "byte" for utf-8 tokenizer
|
||
- "custom" if you're directly passing in a path to the vocab.txt you want to use
|
||
vocab_size - if use "pinyin", all available pinyin types, common alphabets (also those with accent) and symbols
|
||
- if use "char", derived from unfiltered character & symbol counts of custom dataset
|
||
- if use "byte", set to 256 (unicode byte range)
|
||
"""
|
||
if tokenizer in ["pinyin", "char"]:
|
||
tokenizer_path = os.path.join(
|
||
files("f5_tts").joinpath("../../data"),
|
||
f"{dataset_name}_{tokenizer}/vocab.txt",
|
||
)
|
||
with open(tokenizer_path, "r", encoding="utf-8") as f:
|
||
vocab_char_map = {}
|
||
for i, char in enumerate(f):
|
||
vocab_char_map[char[:-1]] = i
|
||
vocab_size = len(vocab_char_map)
|
||
assert (
|
||
vocab_char_map[" "] == 0
|
||
), "make sure space is of idx 0 in vocab.txt, cuz 0 is used for unknown char"
|
||
|
||
elif tokenizer == "byte":
|
||
vocab_char_map = None
|
||
vocab_size = 256
|
||
|
||
elif tokenizer == "custom":
|
||
with open(dataset_name, "r", encoding="utf-8") as f:
|
||
vocab_char_map = {}
|
||
for i, char in enumerate(f):
|
||
vocab_char_map[char[:-1]] = i
|
||
vocab_size = len(vocab_char_map)
|
||
|
||
return vocab_char_map, vocab_size
|
||
|
||
|
||
# convert char to pinyin
|
||
|
||
jieba.initialize()
|
||
print("Word segmentation module jieba initialized.\n")
|
||
|
||
|
||
def convert_char_to_pinyin(text_list, polyphone=True):
|
||
final_text_list = []
|
||
custom_trans = str.maketrans(
|
||
{";": ",", "“": '"', "”": '"', "‘": "'", "’": "'"}
|
||
) # add custom trans here, to address oov
|
||
|
||
def is_chinese(c):
|
||
return "\u3100" <= c <= "\u9fff" # common chinese characters
|
||
|
||
for text in text_list:
|
||
char_list = []
|
||
text = text.translate(custom_trans)
|
||
for seg in jieba.cut(text):
|
||
seg_byte_len = len(bytes(seg, "UTF-8"))
|
||
if seg_byte_len == len(seg): # if pure alphabets and symbols
|
||
if char_list and seg_byte_len > 1 and char_list[-1] not in " :'\"":
|
||
char_list.append(" ")
|
||
char_list.extend(seg)
|
||
elif polyphone and seg_byte_len == 3 * len(
|
||
seg
|
||
): # if pure east asian characters
|
||
seg_ = lazy_pinyin(seg, style=Style.TONE3, tone_sandhi=True)
|
||
for i, c in enumerate(seg):
|
||
if is_chinese(c):
|
||
char_list.append(" ")
|
||
char_list.append(seg_[i])
|
||
else: # if mixed characters, alphabets and symbols
|
||
for c in seg:
|
||
if ord(c) < 256:
|
||
char_list.extend(c)
|
||
elif is_chinese(c):
|
||
char_list.append(" ")
|
||
char_list.extend(
|
||
lazy_pinyin(c, style=Style.TONE3, tone_sandhi=True)
|
||
)
|
||
else:
|
||
char_list.append(c)
|
||
final_text_list.append(char_list)
|
||
|
||
return final_text_list
|
||
|
||
|
||
# filter func for dirty data with many repetitions
|
||
|
||
|
||
def repetition_found(text, length=2, tolerance=10):
|
||
pattern_count = defaultdict(int)
|
||
for i in range(len(text) - length + 1):
|
||
pattern = text[i : i + length]
|
||
pattern_count[pattern] += 1
|
||
for pattern, count in pattern_count.items():
|
||
if count > tolerance:
|
||
return True
|
||
return False
|