icefall/egs/librispeech/WSASR/local/compute_ssl_librispeech.py
2023-09-29 07:52:46 +08:00

101 lines
3.2 KiB
Python
Executable File

#!/usr/bin/env python3
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
# 2023 Johns Hopkins University (author: Dongji Gao)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This file computes fbank features of the LibriSpeech dataset.
It looks for manifests in the directory data/manifests.
The generated fbank features are saved in data/fbank.
"""
import logging
import os
from pathlib import Path
import torch
from lhotse import S3PRLSSL, CutSet, NumpyFilesWriter, S3PRLSSLConfig
from lhotse.recipes.utils import read_manifests_if_cached
from icefall.utils import get_executor
# Torch's multithreaded behavior needs to be disabled or
# it wastes a lot of CPU and slow things down.
# Do this outside of main() in case it needs to take effect
# even when we are not invoking the main (e.g. when spawning subprocesses).
torch.set_num_threads(1)
torch.set_num_interop_threads(1)
def compute_ssl_librispeech():
src_dir = Path("data/manifests")
output_dir = Path("data/ssl")
num_jobs = 1
dataset_parts = (
"dev-clean",
"dev-other",
"test-clean",
"test-other",
"train-clean-100",
)
prefix = "librispeech"
suffix = "jsonl.gz"
manifests = read_manifests_if_cached(
dataset_parts=dataset_parts,
output_dir=src_dir,
prefix=prefix,
suffix=suffix,
)
assert manifests is not None
assert len(manifests) == len(dataset_parts), (
len(manifests),
len(dataset_parts),
list(manifests.keys()),
dataset_parts,
)
extractor = S3PRLSSL(S3PRLSSLConfig(ssl_model="wav2vec2", device="cuda"))
with get_executor() as ex: # Initialize the executor only once.
for partition, m in manifests.items():
cuts_filename = f"{prefix}_cuts_{partition}.{suffix}"
if (output_dir / cuts_filename).is_file():
logging.info(f"{partition} already exists - skipping.")
continue
logging.info(f"Processing {partition}")
cut_set = CutSet.from_manifests(
recordings=m["recordings"],
supervisions=m["supervisions"],
)
cut_set = cut_set.compute_and_store_features(
extractor=extractor,
storage_path=f"{output_dir}/{prefix}_feats_{partition}",
storage_type=NumpyFilesWriter,
)
cut_set.to_file(output_dir / cuts_filename)
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
compute_ssl_librispeech()