mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
531 lines
16 KiB
Python
531 lines
16 KiB
Python
#!/usr/bin/env python3
|
|
# Copyright 2021 Xiaomi Corporation (Author: Liyong Guo,
|
|
# Fangjun Kuang,
|
|
# Wei Kang)
|
|
# 2024 Yuekai Zhang
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
Usage:
|
|
# Command for decoding using fine-tuned models:
|
|
git lfs install
|
|
git clone https://huggingface.co/yuekai/icefall_asr_aishell_whisper
|
|
ln -s icefall_asr_aishell_whisper/exp_large_v2/epoch-10-avg6.pt whisper/exp_large_v2/epoch-999.pt
|
|
|
|
python3 ./whisper/decode.py \
|
|
--exp-dir whisper/exp_large_v2 \
|
|
--model-name large-v2 \
|
|
--epoch 999 --avg 1 \
|
|
--beam-size 10 --max-duration 50
|
|
|
|
# Command for decoding using pretrained models (before fine-tuning):
|
|
|
|
python3 ./whisper/decode.py \
|
|
--exp-dir whisper/exp_large_v2_pretrained \
|
|
--model-name large-v2 \
|
|
--epoch -1 --avg 1 \
|
|
--start-index 14 --end-index 15 \
|
|
--remove-whisper-encoder-input-length-restriction False \
|
|
--beam-size 1 --max-duration 50
|
|
|
|
"""
|
|
|
|
import argparse
|
|
import logging
|
|
import re
|
|
from collections import defaultdict
|
|
from pathlib import Path
|
|
from typing import Dict, List, Optional, Tuple
|
|
|
|
import k2
|
|
import torch
|
|
import torch.nn as nn
|
|
import whisper
|
|
from asr_datamodule import AsrDataModule
|
|
from lhotse.cut import Cut
|
|
from multi_dataset import MultiDataset
|
|
from tn.chinese.normalizer import Normalizer
|
|
from whisper.normalizers import BasicTextNormalizer
|
|
from whisper_decoder_forward_monkey_patch import replace_whisper_decoder_forward
|
|
from whisper_encoder_forward_monkey_patch import replace_whisper_encoder_forward
|
|
from zhconv import convert
|
|
|
|
from icefall.checkpoint import average_checkpoints_with_averaged_model, load_checkpoint
|
|
from icefall.env import get_env_info
|
|
from icefall.utils import (
|
|
AttributeDict,
|
|
setup_logger,
|
|
store_transcripts,
|
|
str2bool,
|
|
write_error_stats,
|
|
)
|
|
|
|
|
|
def average_checkpoints(
|
|
filenames: List[Path], device: torch.device = torch.device("cpu")
|
|
) -> dict:
|
|
"""Average a list of checkpoints.
|
|
The function is mainly used for deepspeed converted checkpoint averaging, which only include model state_dict.
|
|
|
|
Args:
|
|
filenames:
|
|
Filenames of the checkpoints to be averaged. We assume all
|
|
checkpoints are saved by :func:`save_checkpoint`.
|
|
device:
|
|
Move checkpoints to this device before averaging.
|
|
Returns:
|
|
Return a dict (i.e., state_dict) which is the average of all
|
|
model state dicts contained in the checkpoints.
|
|
"""
|
|
n = len(filenames)
|
|
|
|
if "model" in torch.load(filenames[0], map_location=device, weights_only=False):
|
|
avg = torch.load(filenames[0], map_location=device, weights_only=False)["model"]
|
|
else:
|
|
avg = torch.load(filenames[0], map_location=device, weights_only=False)
|
|
|
|
# Identify shared parameters. Two parameters are said to be shared
|
|
# if they have the same data_ptr
|
|
uniqued: Dict[int, str] = dict()
|
|
|
|
for k, v in avg.items():
|
|
v_data_ptr = v.data_ptr()
|
|
if v_data_ptr in uniqued:
|
|
continue
|
|
uniqued[v_data_ptr] = k
|
|
|
|
uniqued_names = list(uniqued.values())
|
|
|
|
for i in range(1, n):
|
|
if "model" in torch.load(filenames[i], map_location=device, weights_only=False):
|
|
state_dict = torch.load(filenames[i], map_location=device, weights_only=False)["model"]
|
|
else:
|
|
state_dict = torch.load(filenames[i], map_location=device, weights_only=False)
|
|
for k in uniqued_names:
|
|
avg[k] += state_dict[k]
|
|
|
|
for k in uniqued_names:
|
|
if avg[k].is_floating_point():
|
|
avg[k] /= n
|
|
else:
|
|
avg[k] //= n
|
|
|
|
return avg
|
|
|
|
|
|
def remove_punctuation(text: str or List[str]):
|
|
"""Modified from https://github.com/yeyupiaoling/Whisper-Finetune/blob/master/utils/data_utils.py
|
|
|
|
Args:
|
|
text: It can be a string or a list of strings.
|
|
Returns:
|
|
Return a string or a list of strings without any punctuation.
|
|
"""
|
|
punctuation = "!,.;:?、!,。;:?《》 "
|
|
if isinstance(text, str):
|
|
text = re.sub(r"[{}]+".format(punctuation), "", text).strip()
|
|
return text
|
|
elif isinstance(text, list):
|
|
result_text = []
|
|
for t in text:
|
|
t = re.sub(r"[{}]+".format(punctuation), "", t).strip()
|
|
result_text.append(t)
|
|
return result_text
|
|
else:
|
|
raise Exception(f"Not support type {type(text)}")
|
|
|
|
|
|
def to_simple(text: str or List[str]):
|
|
"""Convert traditional Chinese to simplified Chinese.
|
|
Args:
|
|
text: It can be a string or a list of strings.
|
|
Returns:
|
|
Return a string or a list of strings converted to simplified Chinese.
|
|
"""
|
|
if isinstance(text, str):
|
|
text = convert(text, "zh-cn")
|
|
return text
|
|
elif isinstance(text, list):
|
|
result_text = []
|
|
for t in text:
|
|
t = convert(t, "zh-cn")
|
|
result_text.append(t)
|
|
return result_text
|
|
else:
|
|
raise Exception(f"Not support type{type(text)}")
|
|
|
|
|
|
def get_parser():
|
|
parser = argparse.ArgumentParser(
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--epoch",
|
|
type=int,
|
|
default=-1,
|
|
help="It specifies the checkpoint to use for decoding."
|
|
"Note: Epoch counts from 0.",
|
|
)
|
|
parser.add_argument(
|
|
"--avg",
|
|
type=int,
|
|
default=1,
|
|
help="Number of checkpoints to average. Automatically select "
|
|
"consecutive checkpoints before the checkpoint specified by "
|
|
"'--epoch'. ",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--method",
|
|
type=str,
|
|
default="beam-search",
|
|
help="""Decoding method.
|
|
Supported values are:
|
|
- beam-search
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--beam-size",
|
|
type=int,
|
|
default=1,
|
|
help="beam size for beam search decoding",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--exp-dir",
|
|
type=str,
|
|
default="whisper/exp",
|
|
help="The experiment dir",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--model-name",
|
|
type=str,
|
|
default="large-v2",
|
|
choices=["large-v2", "large-v3", "medium", "base", "small", "tiny"],
|
|
help="""The model name to use.
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--remove-whisper-encoder-input-length-restriction",
|
|
type=str2bool,
|
|
default=True,
|
|
help="replace whisper encoder forward method to remove input length restriction",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--use-distill-whisper",
|
|
type=str2bool,
|
|
default=False,
|
|
help="Whether to use architecture of distill whisper.",
|
|
)
|
|
|
|
return parser
|
|
|
|
|
|
def get_params() -> AttributeDict:
|
|
params = AttributeDict(
|
|
{
|
|
"env_info": get_env_info(),
|
|
}
|
|
)
|
|
return params
|
|
|
|
|
|
def decode_one_batch(
|
|
params: AttributeDict,
|
|
model: nn.Module,
|
|
batch: dict,
|
|
) -> Dict[str, List[List[int]]]:
|
|
"""Decode one batch and return the result in a dict. The dict has the
|
|
following format:
|
|
|
|
- key: "beam-search"
|
|
- value: A list of lists. Each sublist is a list of token IDs.
|
|
Args:
|
|
params:
|
|
It is returned by :func:`get_params`.
|
|
model:
|
|
The neural model.
|
|
batch:
|
|
It is returned by :meth:`torch.utils.data.DataLoader.__iter__`.
|
|
Returns:
|
|
Return a dict, whose key may be "beam-search".
|
|
"""
|
|
dtype = torch.float16
|
|
device = torch.device("cuda")
|
|
|
|
feature = batch["inputs"]
|
|
assert feature.ndim == 3
|
|
feature = feature.to(device, dtype=dtype).transpose(1, 2)
|
|
if not params.remove_whisper_encoder_input_length_restriction:
|
|
T = 3000
|
|
if feature.shape[2] < T:
|
|
feature = torch.cat(
|
|
[
|
|
feature,
|
|
torch.zeros(
|
|
feature.shape[0], feature.shape[1], T - feature.shape[2]
|
|
).to(device, dtype=dtype),
|
|
],
|
|
2,
|
|
)
|
|
|
|
supervisions = batch["supervisions"]
|
|
feature_len = supervisions["num_frames"]
|
|
feature_len = feature_len.to(device, dtype=dtype)
|
|
results = model.decode(feature, params.decoding_options)
|
|
hyps = [result.text for result in results]
|
|
|
|
hyps = remove_punctuation(hyps)
|
|
hyps = to_simple(hyps)
|
|
hyps = [params.normalizer.normalize(hyp) for hyp in hyps]
|
|
print(hyps)
|
|
return {"beam-search": hyps}
|
|
|
|
|
|
def decode_dataset(
|
|
dl: torch.utils.data.DataLoader,
|
|
params: AttributeDict,
|
|
model: nn.Module,
|
|
) -> Dict[str, List[Tuple[str, List[str], List[str]]]]:
|
|
"""Decode dataset.
|
|
|
|
Args:
|
|
dl:
|
|
The dataloader.
|
|
params:
|
|
It is returned by :func:`get_params`.
|
|
model:
|
|
The neural model.
|
|
Returns:
|
|
Return a dict, whose key may be "beam-search".
|
|
"""
|
|
results = []
|
|
|
|
num_cuts = 0
|
|
|
|
try:
|
|
num_batches = len(dl)
|
|
except TypeError:
|
|
num_batches = "?"
|
|
|
|
results = defaultdict(list)
|
|
for batch_idx, batch in enumerate(dl):
|
|
texts = batch["supervisions"]["text"]
|
|
cut_ids = [cut.id for cut in batch["supervisions"]["cut"]]
|
|
|
|
hyps_dict = decode_one_batch(
|
|
params=params,
|
|
model=model,
|
|
batch=batch,
|
|
)
|
|
|
|
for lm_scale, hyps in hyps_dict.items():
|
|
this_batch = []
|
|
assert len(hyps) == len(texts)
|
|
for cut_id, hyp_words, ref_text in zip(cut_ids, hyps, texts):
|
|
ref_words = ref_text.split()
|
|
this_batch.append((cut_id, ref_words, hyp_words))
|
|
|
|
results[lm_scale].extend(this_batch)
|
|
|
|
num_cuts += len(batch["supervisions"]["text"])
|
|
|
|
if batch_idx % 100 == 0:
|
|
batch_str = f"{batch_idx}/{num_batches}"
|
|
|
|
logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
|
|
return results
|
|
|
|
|
|
def save_results(
|
|
params: AttributeDict,
|
|
test_set_name: str,
|
|
results_dict: Dict[str, List[Tuple[str, List[str], List[str]]]],
|
|
):
|
|
|
|
enable_log = True
|
|
test_set_wers = dict()
|
|
for key, results in results_dict.items():
|
|
recog_path = (
|
|
params.exp_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
|
|
)
|
|
results = sorted(results)
|
|
store_transcripts(filename=recog_path, texts=results)
|
|
if enable_log:
|
|
logging.info(f"The transcripts are stored in {recog_path}")
|
|
|
|
# The following prints out WERs, per-word error statistics and aligned
|
|
# ref/hyp pairs.
|
|
errs_filename = (
|
|
params.exp_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
|
|
)
|
|
# we compute CER for aishell dataset.
|
|
results_char = []
|
|
for res in results:
|
|
results_char.append((res[0], list("".join(res[1])), list("".join(res[2]))))
|
|
with open(errs_filename, "w") as f:
|
|
wer = write_error_stats(
|
|
f, f"{test_set_name}-{key}", results_char, enable_log=enable_log
|
|
)
|
|
test_set_wers[key] = wer
|
|
|
|
if enable_log:
|
|
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
|
|
|
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
|
errs_info = params.exp_dir / f"cer-summary-{test_set_name}-{params.suffix}.txt"
|
|
with open(errs_info, "w") as f:
|
|
print("settings\tCER", file=f)
|
|
for key, val in test_set_wers:
|
|
print("{}\t{}".format(key, val), file=f)
|
|
|
|
s = "\nFor {}, CER of different settings are:\n".format(test_set_name)
|
|
note = "\tbest for {}".format(test_set_name)
|
|
for key, val in test_set_wers:
|
|
s += "{}\t{}{}\n".format(key, val, note)
|
|
note = ""
|
|
logging.info(s)
|
|
|
|
|
|
@torch.no_grad()
|
|
def main():
|
|
parser = get_parser()
|
|
AsrDataModule.add_arguments(parser)
|
|
args = parser.parse_args()
|
|
args.exp_dir = Path(args.exp_dir)
|
|
|
|
params = get_params()
|
|
params.update(vars(args))
|
|
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
|
setup_logger(
|
|
f"{params.exp_dir}/log-{params.method}-beam{params.beam_size}/log-decode-{params.suffix}"
|
|
)
|
|
|
|
options = whisper.DecodingOptions(
|
|
task="transcribe",
|
|
language="zh",
|
|
without_timestamps=True,
|
|
beam_size=params.beam_size,
|
|
)
|
|
params.decoding_options = options
|
|
params.cleaner = BasicTextNormalizer()
|
|
params.normalizer = Normalizer()
|
|
|
|
logging.info("Decoding started")
|
|
logging.info(params)
|
|
|
|
device = torch.device("cpu")
|
|
if torch.cuda.is_available():
|
|
device = torch.device("cuda")
|
|
|
|
logging.info(f"device: {device}")
|
|
|
|
if params.remove_whisper_encoder_input_length_restriction:
|
|
replace_whisper_encoder_forward()
|
|
if params.use_distill_whisper:
|
|
replace_whisper_decoder_forward()
|
|
model = whisper.load_model(params.model_name, "cpu")
|
|
if params.epoch > 0:
|
|
if params.avg > 1:
|
|
start = params.epoch - params.avg
|
|
assert start >= 1, start
|
|
checkpoint = torch.load(
|
|
f"{params.exp_dir}/epoch-{params.epoch}.pt", map_location="cpu", weights_only=False
|
|
)
|
|
if "model" not in checkpoint:
|
|
# deepspeed converted checkpoint only contains model state_dict
|
|
filenames = [
|
|
f"{params.exp_dir}/epoch-{epoch}.pt"
|
|
for epoch in range(start, params.epoch + 1)
|
|
]
|
|
model.load_state_dict(average_checkpoints(filenames))
|
|
else:
|
|
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
|
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
|
logging.info(
|
|
f"Calculating the averaged model over epoch range from "
|
|
f"{start} (excluded) to {params.epoch}"
|
|
)
|
|
model.to(device)
|
|
model.load_state_dict(
|
|
average_checkpoints_with_averaged_model(
|
|
filename_start=filename_start,
|
|
filename_end=filename_end,
|
|
device=device,
|
|
)
|
|
)
|
|
# save checkpoints
|
|
filename = f"{params.exp_dir}/epoch-{params.epoch}-avg-{params.avg}.pt"
|
|
torch.save(model.state_dict(), filename)
|
|
else:
|
|
checkpoint = torch.load(
|
|
f"{params.exp_dir}/epoch-{params.epoch}.pt", map_location="cpu", weights_only=False
|
|
)
|
|
if "model" not in checkpoint:
|
|
model.load_state_dict(checkpoint, strict=True)
|
|
else:
|
|
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
|
model.to(device)
|
|
model.eval()
|
|
num_param = sum([p.numel() for p in model.parameters()])
|
|
logging.info(f"Number of model parameters: {num_param}")
|
|
|
|
# we need cut ids to display recognition results.
|
|
args.return_cuts = True
|
|
|
|
data_module = AsrDataModule(args)
|
|
multi_dataset = MultiDataset(args.manifest_dir, args.start_index, args.end_index)
|
|
|
|
def remove_long_utt(c: Cut):
|
|
# Keep only utterances with duration in 30 seconds
|
|
#
|
|
if c.duration > 30.0:
|
|
# logging.warning(
|
|
# f"Exclude cut with ID {c.id} from training. Duration: {c.duration}"
|
|
# )
|
|
return False
|
|
return True
|
|
|
|
test_sets_cuts = multi_dataset.test_cuts()
|
|
|
|
test_sets = test_sets_cuts.keys()
|
|
test_dls = [
|
|
data_module.test_dataloaders(test_sets_cuts[cuts_name].filter(remove_long_utt))
|
|
for cuts_name in test_sets
|
|
]
|
|
|
|
for test_set, test_dl in zip(test_sets, test_dls):
|
|
results_dict = decode_dataset(
|
|
dl=test_dl,
|
|
params=params,
|
|
model=model,
|
|
)
|
|
|
|
save_results(params=params, test_set_name=test_set, results_dict=results_dict)
|
|
|
|
logging.info("Done!")
|
|
|
|
|
|
torch.set_num_threads(1)
|
|
torch.set_num_interop_threads(1)
|
|
|
|
if __name__ == "__main__":
|
|
main()
|