mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
1030 lines
34 KiB
Python
Executable File
1030 lines
34 KiB
Python
Executable File
#!/usr/bin/env python3
|
||
# Copyright 2023 Xiaomi Corp. (authors: Xiaoyu Yang)
|
||
# 2024 Yuekai Zhang
|
||
#
|
||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||
#
|
||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
# you may not use this file except in compliance with the License.
|
||
# You may obtain a copy of the License at
|
||
#
|
||
# http://www.apache.org/licenses/LICENSE-2.0
|
||
#
|
||
# Unless required by applicable law or agreed to in writing, software
|
||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
# See the License for the specific language governing permissions and
|
||
# limitations under the License.
|
||
"""
|
||
Usage:
|
||
|
||
#fine-tuning with deepspeed zero stage 1
|
||
torchrun --nproc-per-node 8 ./whisper/train.py \
|
||
--max-duration 200 \
|
||
--exp-dir whisper/exp_large_v2 \
|
||
--model-name large-v2 \
|
||
--deepspeed \
|
||
--deepspeed_config ./whisper/ds_config_zero1.json
|
||
|
||
# fine-tuning with ddp
|
||
torchrun --nproc_per_node 8 ./whisper/train.py \
|
||
--max-duration 200 \
|
||
--exp-dir whisper/exp_medium \
|
||
--base-lr 1e-5 \
|
||
--model-name medium
|
||
"""
|
||
|
||
import argparse
|
||
import copy
|
||
import logging
|
||
import os
|
||
import random
|
||
import warnings
|
||
from pathlib import Path
|
||
from shutil import copyfile
|
||
from typing import Any, Dict, List, Optional, Tuple, Union
|
||
|
||
import deepspeed
|
||
import k2
|
||
import optim
|
||
import torch
|
||
import torch.multiprocessing as mp
|
||
import torch.nn as nn
|
||
import whisper
|
||
from asr_datamodule import AsrDataModule
|
||
from deepspeed.utils.zero_to_fp32 import convert_zero_checkpoint_to_fp32_state_dict
|
||
from label_smoothing import LabelSmoothingLoss
|
||
from lhotse import CutSet, load_manifest
|
||
from lhotse.cut import Cut
|
||
from lhotse.dataset.sampling.base import CutSampler
|
||
from lhotse.utils import fix_random_seed
|
||
from multi_dataset import MultiDataset
|
||
from optim import Eden, ScaledAdam
|
||
from torch import Tensor
|
||
from torch.cuda.amp import GradScaler
|
||
from torch.nn.functional import pad as pad_tensor
|
||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||
from torch.utils.tensorboard import SummaryWriter
|
||
from whisper_decoder_forward_monkey_patch import replace_whisper_decoder_forward
|
||
from whisper_encoder_forward_monkey_patch import replace_whisper_encoder_forward
|
||
|
||
from icefall import diagnostics
|
||
from icefall.checkpoint import load_checkpoint, remove_checkpoints
|
||
from icefall.checkpoint import save_checkpoint as save_checkpoint_impl
|
||
from icefall.checkpoint import update_averaged_model
|
||
from icefall.dist import cleanup_dist, get_rank, get_world_size, setup_dist
|
||
from icefall.env import get_env_info
|
||
from icefall.hooks import register_inf_check_hooks
|
||
from icefall.utils import (
|
||
AttributeDict,
|
||
MetricsTracker,
|
||
filter_uneven_sized_batch,
|
||
setup_logger,
|
||
str2bool,
|
||
)
|
||
|
||
LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler]
|
||
|
||
|
||
def set_batch_count(model: Union[nn.Module, DDP], batch_count: float) -> None:
|
||
if isinstance(model, DDP):
|
||
# get underlying nn.Module
|
||
model = model.module
|
||
for module in model.modules():
|
||
if hasattr(module, "batch_count"):
|
||
module.batch_count = batch_count
|
||
|
||
|
||
def get_parser():
|
||
parser = argparse.ArgumentParser(
|
||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||
)
|
||
|
||
parser.add_argument(
|
||
"--tensorboard",
|
||
type=str2bool,
|
||
default=True,
|
||
help="Should various information be logged in tensorboard.",
|
||
)
|
||
|
||
parser.add_argument(
|
||
"--num-epochs",
|
||
type=int,
|
||
default=10,
|
||
help="Number of epochs to train.",
|
||
)
|
||
|
||
parser.add_argument(
|
||
"--start-epoch",
|
||
type=int,
|
||
default=1,
|
||
help="""Resume training from this epoch. It should be positive.
|
||
If larger than 1, it will load checkpoint from
|
||
exp-dir/epoch-{start_epoch-1}.pt
|
||
""",
|
||
)
|
||
|
||
parser.add_argument(
|
||
"--start-batch",
|
||
type=int,
|
||
default=0,
|
||
help="""If positive, --start-epoch is ignored and
|
||
it loads the checkpoint from exp-dir/checkpoint-{start_batch}.pt
|
||
""",
|
||
)
|
||
|
||
parser.add_argument(
|
||
"--exp-dir",
|
||
type=str,
|
||
default="whisper/exp",
|
||
help="""The experiment dir.
|
||
It specifies the directory where all training related
|
||
files, e.g., checkpoints, log, etc, are saved
|
||
""",
|
||
)
|
||
|
||
parser.add_argument(
|
||
"--model-name",
|
||
type=str,
|
||
default="large-v2",
|
||
choices=["large-v2", "large-v3", "medium", "base", "small", "tiny"],
|
||
help="""The model name to use.
|
||
""",
|
||
)
|
||
|
||
parser.add_argument(
|
||
"--pretrained-model-path",
|
||
type=str,
|
||
default=None,
|
||
help="""The path to the pretrained model if it is not None. Training will
|
||
start from this model. e.g. ./wenetspeech/ASR/whisper/exp_large_v2/epoch-4-avg-3.pt
|
||
""",
|
||
)
|
||
|
||
parser.add_argument(
|
||
"--base-lr", type=float, default=1e-5, help="The base learning rate."
|
||
)
|
||
|
||
parser.add_argument(
|
||
"--lr-batches",
|
||
type=float,
|
||
default=5000,
|
||
help="""Number of steps that affects how rapidly the learning rate
|
||
decreases. We suggest not to change this.""",
|
||
)
|
||
|
||
parser.add_argument(
|
||
"--lr-epochs",
|
||
type=float,
|
||
default=6,
|
||
help="""Number of epochs that affects how rapidly the learning rate decreases.
|
||
""",
|
||
)
|
||
|
||
parser.add_argument(
|
||
"--seed",
|
||
type=int,
|
||
default=42,
|
||
help="The seed for random generators intended for reproducibility",
|
||
)
|
||
|
||
parser.add_argument(
|
||
"--print-diagnostics",
|
||
type=str2bool,
|
||
default=False,
|
||
help="Accumulate stats on activations, print them and exit.",
|
||
)
|
||
|
||
parser.add_argument(
|
||
"--inf-check",
|
||
type=str2bool,
|
||
default=False,
|
||
help="Add hooks to check for infinite module outputs and gradients.",
|
||
)
|
||
|
||
parser.add_argument(
|
||
"--keep-last-k",
|
||
type=int,
|
||
default=30,
|
||
help="""Only keep this number of checkpoints on disk.
|
||
For instance, if it is 3, there are only 3 checkpoints
|
||
in the exp-dir with filenames `checkpoint-xxx.pt`.
|
||
It does not affect checkpoints with name `epoch-xxx.pt`.
|
||
""",
|
||
)
|
||
|
||
parser.add_argument(
|
||
"--average-period",
|
||
type=int,
|
||
default=200,
|
||
help="""Update the averaged model, namely `model_avg`, after processing
|
||
this number of batches. `model_avg` is a separate version of model,
|
||
in which each floating-point parameter is the average of all the
|
||
parameters from the start of training. Each time we take the average,
|
||
we do: `model_avg = model * (average_period / batch_idx_train) +
|
||
model_avg * ((batch_idx_train - average_period) / batch_idx_train)`.
|
||
""",
|
||
)
|
||
|
||
parser.add_argument(
|
||
"--use-fp16",
|
||
type=str2bool,
|
||
default=True,
|
||
help="Whether to use half precision training.",
|
||
)
|
||
|
||
parser.add_argument(
|
||
"--use-distill-whisper",
|
||
type=str2bool,
|
||
default=False,
|
||
help="Whether to use architecture of distill whisper.",
|
||
)
|
||
|
||
parser = deepspeed.add_config_arguments(parser)
|
||
|
||
return parser
|
||
|
||
|
||
def get_params() -> AttributeDict:
|
||
"""Return a dict containing training parameters.
|
||
|
||
All training related parameters that are not passed from the commandline
|
||
are saved in the variable `params`.
|
||
|
||
Commandline options are merged into `params` after they are parsed, so
|
||
you can also access them via `params`.
|
||
|
||
Explanation of options saved in `params`:
|
||
|
||
- frame_shift_ms: The frame shift in milliseconds.
|
||
- allowed_excess_duration_ratio: The allowed excess duration ratio.
|
||
- best_train_loss: The best training loss so far.
|
||
- best_valid_loss: The best validation loss so far.
|
||
- best_train_epoch: The epoch where the best training loss is achieved.
|
||
- best_valid_epoch: The epoch where the best validation loss is achieved.
|
||
- batch_idx_train: The batch index of the current batch.
|
||
- log_interval: Log training stats every `log_interval` batches.
|
||
- reset_interval: Reset the stats every `reset_interval` batches.
|
||
- valid_interval: Run validation every `valid_interval` batches.
|
||
- env_info: The environment information.
|
||
"""
|
||
params = AttributeDict(
|
||
{
|
||
"frame_shift_ms": 10.0,
|
||
"subsampling_factor": 2,
|
||
"allowed_excess_duration_ratio": 0.1,
|
||
"best_train_loss": float("inf"),
|
||
"best_valid_loss": float("inf"),
|
||
"best_train_epoch": -1,
|
||
"best_valid_epoch": -1,
|
||
"batch_idx_train": 0,
|
||
"log_interval": 50,
|
||
"reset_interval": 200,
|
||
"valid_interval": 10000,
|
||
"env_info": get_env_info(),
|
||
}
|
||
)
|
||
|
||
return params
|
||
|
||
|
||
def load_checkpoint_if_available(
|
||
params: AttributeDict,
|
||
model: nn.Module,
|
||
model_avg: nn.Module = None,
|
||
optimizer: Optional[torch.optim.Optimizer] = None,
|
||
scheduler: Optional[LRSchedulerType] = None,
|
||
) -> Optional[Dict[str, Any]]:
|
||
"""Load checkpoint from file.
|
||
|
||
If params.start_batch is positive, it will load the checkpoint from
|
||
`params.exp_dir/checkpoint-{params.start_batch}.pt`. Otherwise, if
|
||
params.start_epoch is larger than 1, it will load the checkpoint from
|
||
`params.start_epoch - 1`.
|
||
|
||
Apart from loading state dict for `model` and `optimizer` it also updates
|
||
`best_train_epoch`, `best_train_loss`, `best_valid_epoch`,
|
||
and `best_valid_loss` in `params`.
|
||
|
||
Args:
|
||
params:
|
||
The return value of :func:`get_params`.
|
||
model:
|
||
The training model.
|
||
model_avg:
|
||
The stored model averaged from the start of training.
|
||
optimizer:
|
||
The optimizer that we are using.
|
||
scheduler:
|
||
The scheduler that we are using.
|
||
Returns:
|
||
Return a dict containing previously saved training info.
|
||
"""
|
||
if params.start_batch > 0:
|
||
filename = params.exp_dir / f"checkpoint-{params.start_batch}.pt"
|
||
elif params.start_epoch > 1:
|
||
filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt"
|
||
else:
|
||
return None
|
||
|
||
assert filename.is_file(), f"{filename} does not exist!"
|
||
|
||
saved_params = load_checkpoint(
|
||
filename,
|
||
model=model,
|
||
model_avg=model_avg,
|
||
optimizer=optimizer,
|
||
scheduler=scheduler,
|
||
)
|
||
|
||
keys = [
|
||
"best_train_epoch",
|
||
"best_valid_epoch",
|
||
"batch_idx_train",
|
||
"best_train_loss",
|
||
"best_valid_loss",
|
||
]
|
||
for k in keys:
|
||
params[k] = saved_params[k]
|
||
|
||
if params.start_batch > 0:
|
||
if "cur_epoch" in saved_params:
|
||
params["start_epoch"] = saved_params["cur_epoch"]
|
||
|
||
return saved_params
|
||
|
||
|
||
def save_checkpoint(
|
||
params: AttributeDict,
|
||
model: Union[nn.Module, DDP],
|
||
model_avg: Optional[nn.Module] = None,
|
||
optimizer: Optional[torch.optim.Optimizer] = None,
|
||
scheduler: Optional[LRSchedulerType] = None,
|
||
sampler: Optional[CutSampler] = None,
|
||
scaler: Optional[GradScaler] = None,
|
||
rank: int = 0,
|
||
) -> None:
|
||
"""Save model, optimizer, scheduler and training stats to file.
|
||
|
||
Args:
|
||
params:
|
||
It is returned by :func:`get_params`.
|
||
model:
|
||
The training model.
|
||
model_avg:
|
||
The stored model averaged from the start of training.
|
||
optimizer:
|
||
The optimizer used in the training.
|
||
sampler:
|
||
The sampler for the training dataset.
|
||
scaler:
|
||
The scaler used for mix precision training.
|
||
"""
|
||
if rank != 0:
|
||
return
|
||
filename = params.exp_dir / f"epoch-{params.cur_epoch}.pt"
|
||
save_checkpoint_impl(
|
||
filename=filename,
|
||
model=model,
|
||
model_avg=model_avg,
|
||
params=params,
|
||
optimizer=optimizer,
|
||
scheduler=scheduler,
|
||
sampler=sampler,
|
||
scaler=scaler,
|
||
rank=rank,
|
||
)
|
||
|
||
if params.best_train_epoch == params.cur_epoch:
|
||
best_train_filename = params.exp_dir / "best-train-loss.pt"
|
||
copyfile(src=filename, dst=best_train_filename)
|
||
|
||
if params.best_valid_epoch == params.cur_epoch:
|
||
best_valid_filename = params.exp_dir / "best-valid-loss.pt"
|
||
copyfile(src=filename, dst=best_valid_filename)
|
||
|
||
|
||
def compute_loss(
|
||
params: AttributeDict,
|
||
tokenizer: whisper.tokenizer.Tokenizer,
|
||
model: Union[nn.Module, DDP],
|
||
batch: dict,
|
||
is_training: bool,
|
||
) -> Tuple[Tensor, MetricsTracker]:
|
||
"""
|
||
Compute the loss for the given batch.
|
||
Args:
|
||
params:
|
||
It is returned by :func:`get_params`.
|
||
tokenizer:
|
||
The tokenizer used to encode the text.
|
||
model:
|
||
The model for training.
|
||
batch:
|
||
A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()`
|
||
for the content in it.
|
||
is_training:
|
||
Whether it is training.
|
||
Returns:
|
||
Return a tuple of two elements. The first element is the loss tensor.
|
||
"""
|
||
# For the uneven-sized batch, the total duration after padding would possibly
|
||
# cause OOM. Hence, for each batch, which is sorted descendingly by length,
|
||
# we simply drop the last few shortest samples, so that the retained total frames
|
||
# (after padding) would not exceed `allowed_max_frames`:
|
||
# `allowed_max_frames = int(max_frames * (1.0 + allowed_excess_duration_ratio))`,
|
||
# where `max_frames = max_duration * 1000 // frame_shift_ms`.
|
||
# We set allowed_excess_duration_ratio=0.1.
|
||
if isinstance(model, DDP):
|
||
# get underlying nn.Module
|
||
model = model.module
|
||
|
||
def _batch_tensors(tensors: List[Tensor], pad_value: Any) -> Tensor:
|
||
padding_size = max(tensor.shape[0] for tensor in tensors)
|
||
dims = len(tensors[0].shape)
|
||
padded_tensors = []
|
||
for tensor in tensors:
|
||
padding = [0] * 2 * dims
|
||
padding[-1] = padding_size - tensor.shape[0]
|
||
padded_tensors.append(pad_tensor(tensor, padding, "constant", pad_value))
|
||
return torch.stack([tensor for tensor in padded_tensors], dim=0)
|
||
|
||
def normalize_text_alimeeting(text: str, normalize: str = "m2met") -> str:
|
||
"""
|
||
Text normalization similar to M2MeT challenge baseline.
|
||
See: https://github.com/yufan-aslp/AliMeeting/blob/main/asr/local/text_normalize.pl
|
||
"""
|
||
if normalize == "none":
|
||
return text
|
||
elif normalize == "m2met":
|
||
import re
|
||
|
||
text = text.replace(" ", "")
|
||
text = text.replace("<sil>", "")
|
||
text = text.replace("<%>", "")
|
||
text = text.replace("<->", "")
|
||
text = text.replace("<$>", "")
|
||
text = text.replace("<#>", "")
|
||
text = text.replace("<_>", "")
|
||
text = text.replace("<space>", "")
|
||
text = text.replace("`", "")
|
||
text = text.replace("&", "")
|
||
text = text.replace(",", "")
|
||
if re.search("[a-zA-Z]", text):
|
||
text = text.upper()
|
||
text = text.replace("A", "A")
|
||
text = text.replace("a", "A")
|
||
text = text.replace("b", "B")
|
||
text = text.replace("c", "C")
|
||
text = text.replace("k", "K")
|
||
text = text.replace("t", "T")
|
||
text = text.replace(",", "")
|
||
text = text.replace("丶", "")
|
||
text = text.replace("。", "")
|
||
text = text.replace("、", "")
|
||
text = text.replace("?", "")
|
||
return text
|
||
|
||
max_frames = params.max_duration * 1000 // params.frame_shift_ms
|
||
allowed_max_frames = int(max_frames * (1.0 + params.allowed_excess_duration_ratio))
|
||
batch = filter_uneven_sized_batch(batch, allowed_max_frames)
|
||
|
||
device = model.device if isinstance(model, DDP) else next(model.parameters()).device
|
||
feature = batch["inputs"]
|
||
|
||
assert feature.ndim == 3
|
||
feature = feature.to(device)
|
||
feature = feature.transpose(1, 2) # (N, C, T)
|
||
|
||
supervisions = batch["supervisions"]
|
||
feature_lens = supervisions["num_frames"].to(device)
|
||
|
||
batch_idx_train = params.batch_idx_train
|
||
|
||
texts = batch["supervisions"]["text"]
|
||
# remove spaces in texts
|
||
texts = [normalize_text_alimeeting(text) for text in texts]
|
||
|
||
text_tokens_list = [
|
||
list(tokenizer.sot_sequence_including_notimestamps)
|
||
+ tokenizer.encode(text)
|
||
+ [tokenizer.eot]
|
||
for text in texts
|
||
]
|
||
# convert it to torch tensor
|
||
text_tokens_list = [
|
||
torch.LongTensor(text_tokens) for text_tokens in text_tokens_list
|
||
]
|
||
|
||
# 50256 is the index of <pad> for all whisper models
|
||
prev_outputs_tokens = _batch_tensors(
|
||
[tokens[:-1] for tokens in text_tokens_list], pad_value=50256
|
||
)
|
||
target_tokens = _batch_tensors(
|
||
[tokens[1:] for tokens in text_tokens_list], pad_value=50256
|
||
)
|
||
target_lengths = torch.LongTensor(
|
||
[tokens.shape[0] - 1 for tokens in text_tokens_list]
|
||
)
|
||
|
||
decoder_criterion = LabelSmoothingLoss(
|
||
ignore_index=50256, label_smoothing=0.1, reduction="sum"
|
||
)
|
||
|
||
# ignore the first 3 tokens, which are always <|lang_id|>, <|transcibe|>, <|notimestampes|>
|
||
ignore_prefix_size = 3
|
||
with torch.set_grad_enabled(is_training):
|
||
encoder_out = model.encoder(feature)
|
||
text_logits = model.decoder(prev_outputs_tokens.to(device), encoder_out)
|
||
text_logits = text_logits[:, ignore_prefix_size:, :]
|
||
target_tokens = target_tokens[:, ignore_prefix_size:]
|
||
loss = decoder_criterion(text_logits, target_tokens.to(device))
|
||
|
||
assert loss.requires_grad == is_training
|
||
|
||
info = MetricsTracker()
|
||
with warnings.catch_warnings():
|
||
warnings.simplefilter("ignore")
|
||
info["frames"] = (feature_lens // params.subsampling_factor).sum().item()
|
||
|
||
# Note: We use reduction=sum while computing the loss.
|
||
info["loss"] = loss.detach().cpu().item()
|
||
|
||
return loss, info
|
||
|
||
|
||
def compute_validation_loss(
|
||
params: AttributeDict,
|
||
tokenizer: whisper.tokenizer.Tokenizer,
|
||
model: Union[nn.Module, DDP],
|
||
valid_dl: torch.utils.data.DataLoader,
|
||
world_size: int = 1,
|
||
) -> MetricsTracker:
|
||
"""Run the validation process."""
|
||
model.eval()
|
||
|
||
tot_loss = MetricsTracker()
|
||
|
||
for batch_idx, batch in enumerate(valid_dl):
|
||
with torch.cuda.amp.autocast(enabled=params.use_fp16):
|
||
loss, loss_info = compute_loss(
|
||
params=params,
|
||
tokenizer=tokenizer,
|
||
model=model,
|
||
batch=batch,
|
||
is_training=False,
|
||
)
|
||
assert loss.requires_grad is False
|
||
tot_loss = tot_loss + loss_info
|
||
|
||
if world_size > 1:
|
||
tot_loss.reduce(loss.device)
|
||
|
||
loss_value = tot_loss["loss"] / tot_loss["frames"]
|
||
if loss_value < params.best_valid_loss:
|
||
params.best_valid_epoch = params.cur_epoch
|
||
params.best_valid_loss = loss_value
|
||
|
||
return tot_loss
|
||
|
||
|
||
def train_one_epoch(
|
||
params: AttributeDict,
|
||
tokenizer: whisper.tokenizer.Tokenizer,
|
||
model: Union[nn.Module, DDP],
|
||
optimizer: torch.optim.Optimizer,
|
||
scheduler: LRSchedulerType,
|
||
train_dl: torch.utils.data.DataLoader,
|
||
valid_dl: torch.utils.data.DataLoader,
|
||
scaler: GradScaler,
|
||
model_avg: Optional[nn.Module] = None,
|
||
tb_writer: Optional[SummaryWriter] = None,
|
||
world_size: int = 1,
|
||
rank: int = 0,
|
||
) -> None:
|
||
"""Train the model for one epoch.
|
||
|
||
The training loss from the mean of all frames is saved in
|
||
`params.train_loss`. It runs the validation process every
|
||
`params.valid_interval` batches.
|
||
|
||
Args:
|
||
params:
|
||
It is returned by :func:`get_params`.
|
||
model:
|
||
The model for training.
|
||
optimizer:
|
||
The optimizer we are using.
|
||
scheduler:
|
||
The learning rate scheduler, we call step() every step.
|
||
train_dl:
|
||
Dataloader for the training dataset.
|
||
valid_dl:
|
||
Dataloader for the validation dataset.
|
||
scaler:
|
||
The scaler used for mix precision training.
|
||
model_avg:
|
||
The stored model averaged from the start of training.
|
||
tb_writer:
|
||
Writer to write log messages to tensorboard.
|
||
world_size:
|
||
Number of nodes in DDP training. If it is 1, DDP is disabled.
|
||
rank:
|
||
The rank of the node in DDP training. If no DDP is used, it should
|
||
be set to 0.
|
||
"""
|
||
model.train()
|
||
|
||
tot_loss = MetricsTracker()
|
||
|
||
for batch_idx, batch in enumerate(train_dl):
|
||
params.batch_idx_train += 1
|
||
batch_size = len(batch["supervisions"]["text"])
|
||
if batch_idx % params.valid_interval == 0 and not params.print_diagnostics:
|
||
logging.info("Computing validation loss")
|
||
valid_info = compute_validation_loss(
|
||
params=params,
|
||
tokenizer=tokenizer,
|
||
model=model,
|
||
valid_dl=valid_dl,
|
||
world_size=world_size,
|
||
)
|
||
model.train()
|
||
logging.info(f"Epoch {params.cur_epoch}, validation: {valid_info}")
|
||
logging.info(
|
||
f"Maximum memory allocated so far is {torch.cuda.max_memory_allocated()//1000000}MB"
|
||
)
|
||
if tb_writer is not None:
|
||
valid_info.write_summary(
|
||
tb_writer, "train/valid_", params.batch_idx_train
|
||
)
|
||
if params.deepspeed:
|
||
model.save_checkpoint(
|
||
save_dir=params.exp_dir,
|
||
tag=f"epoch-{params.cur_epoch}-checkpoint-{batch_idx}",
|
||
client_state={},
|
||
)
|
||
if rank == 0:
|
||
convert_zero_checkpoint_to_fp32_state_dict(
|
||
params.exp_dir,
|
||
f"{params.exp_dir}/epoch-{params.cur_epoch}-checkpoint-{batch_idx}.pt",
|
||
tag=f"epoch-{params.cur_epoch}-checkpoint-{batch_idx}",
|
||
)
|
||
os.system(
|
||
f"rm -rf {params.exp_dir}/epoch-{params.cur_epoch}-checkpoint-{batch_idx}"
|
||
)
|
||
|
||
try:
|
||
with torch.cuda.amp.autocast(enabled=params.use_fp16):
|
||
loss, loss_info = compute_loss(
|
||
params=params,
|
||
tokenizer=tokenizer,
|
||
model=model,
|
||
batch=batch,
|
||
is_training=True,
|
||
)
|
||
# summary stats
|
||
tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info
|
||
|
||
# NOTE: We use reduction==sum and loss is computed over utterances
|
||
# in the batch and there is no normalization to it so far.
|
||
if params.deepspeed:
|
||
# deepspeed's backward() is different from torch's backward()
|
||
# in that it does not accept a loss tensor as input.
|
||
# It computes the loss internally.
|
||
model.backward(loss)
|
||
model.step()
|
||
else:
|
||
scaler.scale(loss).backward()
|
||
set_batch_count(model, params.batch_idx_train)
|
||
scheduler.step_batch(params.batch_idx_train)
|
||
|
||
scaler.step(optimizer)
|
||
scaler.update()
|
||
optimizer.zero_grad()
|
||
except: # noqa
|
||
display_and_save_batch(batch, params=params)
|
||
raise
|
||
|
||
if params.print_diagnostics and batch_idx == 5:
|
||
return
|
||
|
||
if (
|
||
rank == 0
|
||
and params.batch_idx_train > 0
|
||
and params.batch_idx_train % params.average_period == 0
|
||
and not params.deepspeed
|
||
):
|
||
update_averaged_model(
|
||
params=params,
|
||
model_cur=model,
|
||
model_avg=model_avg,
|
||
)
|
||
|
||
if batch_idx % 100 == 0 and params.use_fp16 and not params.deepspeed:
|
||
# If the grad scale was less than 1, try increasing it. The _growth_interval
|
||
# of the grad scaler is configurable, but we can't configure it to have different
|
||
# behavior depending on the current grad scale.
|
||
cur_grad_scale = scaler._scale.item()
|
||
if cur_grad_scale < 1.0 or (cur_grad_scale < 8.0 and batch_idx % 400 == 0):
|
||
scaler.update(cur_grad_scale * 2.0)
|
||
if cur_grad_scale < 0.01:
|
||
logging.warning(f"Grad scale is small: {cur_grad_scale}")
|
||
if cur_grad_scale < 1.0e-05:
|
||
raise RuntimeError(
|
||
f"grad_scale is too small, exiting: {cur_grad_scale}"
|
||
)
|
||
if batch_idx % params.log_interval == 0:
|
||
try:
|
||
cur_lr = scheduler.get_last_lr()[0]
|
||
except: # noqa
|
||
cur_lr = 0.0
|
||
cur_grad_scale = (
|
||
scaler._scale.item()
|
||
if (params.use_fp16 and not params.deepspeed)
|
||
else 1.0
|
||
)
|
||
|
||
logging.info(
|
||
f"Epoch {params.cur_epoch}, "
|
||
f"batch {batch_idx}, loss[{loss_info}], "
|
||
f"tot_loss[{tot_loss}], batch size: {batch_size}, "
|
||
f"lr: {cur_lr:.2e}, "
|
||
+ (
|
||
f"grad_scale: {scaler._scale.item()}"
|
||
if (params.use_fp16 and not params.deepspeed)
|
||
else ""
|
||
)
|
||
)
|
||
|
||
if tb_writer is not None:
|
||
tb_writer.add_scalar(
|
||
"train/learning_rate", cur_lr, params.batch_idx_train
|
||
)
|
||
|
||
loss_info.write_summary(
|
||
tb_writer, "train/current_", params.batch_idx_train
|
||
)
|
||
tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train)
|
||
if params.use_fp16:
|
||
tb_writer.add_scalar(
|
||
"train/grad_scale",
|
||
cur_grad_scale,
|
||
params.batch_idx_train,
|
||
)
|
||
|
||
loss_value = tot_loss["loss"] / tot_loss["frames"]
|
||
params.train_loss = loss_value
|
||
if params.train_loss < params.best_train_loss:
|
||
params.best_train_epoch = params.cur_epoch
|
||
params.best_train_loss = params.train_loss
|
||
|
||
|
||
def run(rank, world_size, args):
|
||
"""
|
||
Args:
|
||
rank:
|
||
It is a value between 0 and `world_size-1`, which is
|
||
passed automatically by `mp.spawn()` in :func:`main`.
|
||
The node with rank 0 is responsible for saving checkpoint.
|
||
world_size:
|
||
Number of GPUs for DDP training.
|
||
args:
|
||
The return value of get_parser().parse_args()
|
||
"""
|
||
params = get_params()
|
||
params.update(vars(args))
|
||
|
||
fix_random_seed(params.seed)
|
||
|
||
setup_logger(f"{params.exp_dir}/log/log-train")
|
||
logging.info(params)
|
||
|
||
logging.info("About to create model")
|
||
|
||
replace_whisper_encoder_forward()
|
||
if params.use_distill_whisper:
|
||
replace_whisper_decoder_forward()
|
||
model = whisper.load_model(params.model_name, "cpu")
|
||
del model.alignment_heads
|
||
|
||
if params.pretrained_model_path:
|
||
checkpoint = torch.load(params.pretrained_model_path, map_location="cpu", weights_only=False)
|
||
if "model" not in checkpoint:
|
||
model.load_state_dict(checkpoint, strict=True)
|
||
else:
|
||
load_checkpoint(params.pretrained_model_path, model)
|
||
|
||
num_param = sum([p.numel() for p in model.parameters()])
|
||
logging.info(f"Number of model parameters: {num_param}")
|
||
|
||
tokenizer = whisper.tokenizer.get_tokenizer(
|
||
model.is_multilingual,
|
||
num_languages=model.num_languages,
|
||
language="zh",
|
||
task="transcribe",
|
||
)
|
||
|
||
model_avg: Optional[nn.Module] = None
|
||
if rank == 0:
|
||
# model_avg is only used with rank 0
|
||
model_avg = copy.deepcopy(model).to(torch.float64)
|
||
|
||
assert params.start_epoch > 0, params.start_epoch
|
||
checkpoints = load_checkpoint_if_available(
|
||
params=params, model=model, model_avg=model_avg
|
||
)
|
||
|
||
if torch.cuda.is_available():
|
||
device = torch.device("cuda", rank)
|
||
else:
|
||
device = torch.device("cpu")
|
||
logging.info(f"Device: {device}")
|
||
model.to(device)
|
||
|
||
optimizer = torch.optim.AdamW(model.parameters(), lr=params.base_lr)
|
||
scheduler = Eden(optimizer, params.lr_batches, params.lr_epochs)
|
||
|
||
if checkpoints and "optimizer" in checkpoints:
|
||
logging.info("Loading optimizer state dict")
|
||
optimizer.load_state_dict(checkpoints["optimizer"])
|
||
|
||
if (
|
||
checkpoints
|
||
and "scheduler" in checkpoints
|
||
and checkpoints["scheduler"] is not None
|
||
):
|
||
logging.info("Loading scheduler state dict")
|
||
scheduler.load_state_dict(checkpoints["scheduler"])
|
||
|
||
if world_size > 1:
|
||
if params.deepspeed:
|
||
logging.info("Using DeepSpeed")
|
||
model, optimizer, _, scheduler = deepspeed.initialize(
|
||
args=params, model=model, model_parameters=model.parameters()
|
||
)
|
||
else:
|
||
logging.info("Using DDP")
|
||
setup_dist(use_ddp_launch=True)
|
||
model = DDP(model, device_ids=[rank], find_unused_parameters=True)
|
||
|
||
if params.print_diagnostics:
|
||
opts = diagnostics.TensorDiagnosticOptions(
|
||
512
|
||
) # allow 4 megabytes per sub-module
|
||
diagnostic = diagnostics.attach_diagnostics(model, opts)
|
||
|
||
if params.inf_check:
|
||
register_inf_check_hooks(model)
|
||
|
||
data_module = AsrDataModule(args)
|
||
multi_dataset = MultiDataset(args.manifest_dir)
|
||
|
||
if params.start_batch > 0 and checkpoints and "sampler" in checkpoints:
|
||
# We only load the sampler's state dict when it loads a checkpoint
|
||
# saved in the middle of an epoch
|
||
sampler_state_dict = checkpoints["sampler"]
|
||
else:
|
||
sampler_state_dict = None
|
||
|
||
def remove_short_and_long_utt(c: Cut):
|
||
# Keep only utterances with duration between 1 second and 20 seconds
|
||
#
|
||
# Caution: There is a reason to select 20.0 here. Please see
|
||
# ../local/display_manifest_statistics.py
|
||
#
|
||
# You should use ../local/display_manifest_statistics.py to get
|
||
# an utterance duration distribution for your dataset to select
|
||
# the threshold
|
||
if c.duration < 1.0 or c.duration > 20.0:
|
||
# logging.warning(
|
||
# f"Exclude cut with ID {c.id} from training. Duration: {c.duration}"
|
||
# )
|
||
return False
|
||
return True
|
||
|
||
train_cuts = multi_dataset.train_cuts()
|
||
train_cuts = train_cuts.filter(remove_short_and_long_utt)
|
||
|
||
train_dl = data_module.train_dataloaders(
|
||
train_cuts, sampler_state_dict=sampler_state_dict
|
||
)
|
||
|
||
valid_cuts = multi_dataset.dev_cuts()
|
||
valid_dl = data_module.valid_dataloaders(valid_cuts)
|
||
|
||
scaler = GradScaler(enabled=params.use_fp16, init_scale=1.0)
|
||
if checkpoints and "grad_scaler" in checkpoints:
|
||
logging.info("Loading grad scaler state dict")
|
||
scaler.load_state_dict(checkpoints["grad_scaler"])
|
||
|
||
if args.tensorboard and rank == 0:
|
||
tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard")
|
||
else:
|
||
tb_writer = None
|
||
|
||
logging.info(f"start training from epoch {params.start_epoch}")
|
||
for epoch in range(params.start_epoch, params.num_epochs + 1):
|
||
if not params.deepspeed:
|
||
scheduler.step_epoch(epoch - 1)
|
||
fix_random_seed(params.seed + epoch - 1)
|
||
train_dl.sampler.set_epoch(epoch - 1)
|
||
|
||
if tb_writer is not None:
|
||
tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train)
|
||
|
||
params.cur_epoch = epoch
|
||
|
||
train_one_epoch(
|
||
params=params,
|
||
tokenizer=tokenizer,
|
||
model=model,
|
||
model_avg=model_avg,
|
||
optimizer=optimizer,
|
||
scheduler=scheduler,
|
||
train_dl=train_dl,
|
||
valid_dl=valid_dl,
|
||
scaler=scaler,
|
||
tb_writer=tb_writer,
|
||
world_size=world_size,
|
||
rank=rank,
|
||
)
|
||
|
||
if params.print_diagnostics:
|
||
diagnostic.print_diagnostics()
|
||
break
|
||
|
||
if params.deepspeed:
|
||
model.save_checkpoint(
|
||
save_dir=params.exp_dir,
|
||
tag=f"epoch-{params.cur_epoch}",
|
||
client_state={},
|
||
)
|
||
if rank == 0:
|
||
convert_zero_checkpoint_to_fp32_state_dict(
|
||
params.exp_dir,
|
||
f"{params.exp_dir}/epoch-{params.cur_epoch}.pt",
|
||
tag=f"epoch-{params.cur_epoch}",
|
||
)
|
||
os.system(f"rm -rf {params.exp_dir}/epoch-{params.cur_epoch}")
|
||
else:
|
||
save_checkpoint(
|
||
params=params,
|
||
model=model,
|
||
model_avg=model_avg,
|
||
optimizer=optimizer,
|
||
scheduler=scheduler,
|
||
sampler=train_dl.sampler,
|
||
scaler=scaler,
|
||
rank=rank,
|
||
)
|
||
|
||
logging.info("Done!")
|
||
|
||
if world_size > 1 and not params.deepspeed:
|
||
torch.distributed.barrier()
|
||
cleanup_dist()
|
||
|
||
|
||
def display_and_save_batch(
|
||
batch: dict,
|
||
params: AttributeDict,
|
||
) -> None:
|
||
"""Display the batch statistics and save the batch into disk.
|
||
|
||
Args:
|
||
batch:
|
||
A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()`
|
||
for the content in it.
|
||
params:
|
||
Parameters for training. See :func:`get_params`.
|
||
"""
|
||
from lhotse.utils import uuid4
|
||
|
||
filename = f"{params.exp_dir}/batch-{uuid4()}.pt"
|
||
logging.info(f"Saving batch to {filename}")
|
||
torch.save(batch, filename)
|
||
|
||
supervisions = batch["supervisions"]
|
||
features = batch["inputs"]
|
||
|
||
logging.info(f"features shape: {features.shape}")
|
||
|
||
|
||
def main():
|
||
parser = get_parser()
|
||
AsrDataModule.add_arguments(parser)
|
||
args = parser.parse_args()
|
||
args.exp_dir = Path(args.exp_dir)
|
||
|
||
world_size = get_world_size()
|
||
rank = get_rank()
|
||
|
||
torch.set_num_threads(1)
|
||
torch.set_num_interop_threads(1)
|
||
run(rank=rank, world_size=world_size, args=args)
|
||
|
||
|
||
if __name__ == "__main__":
|
||
main()
|