mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 10:02:22 +00:00
* add whisper fbank for wenetspeech * add whisper fbank for other dataset * add str to bool * add decode for wenetspeech * add requirments.txt * add original model decode with 30s * test feature extractor speed * add aishell2 feat * change compute feature batch * fix overwrite * fix executor * regression * add kaldifeatwhisper fbank * fix io issue * parallel jobs * use multi machines * add wenetspeech fine-tune scripts * add monkey patch codes * remove useless file * fix subsampling factor * fix too long audios * add remove long short * fix whisper version to support multi batch beam * decode all wav files * remove utterance more than 30s in test_net * only test net * using soft links * add kespeech whisper feats * fix index error * add manifests for whisper * change to licomchunky writer * add missing option * decrease cpu usage * add speed perturb for kespeech * fix kespeech speed perturb * add dataset * load checkpoint from specific path * add speechio * add speechio results --------- Co-authored-by: zr_jin <peter.jin.cn@gmail.com>
150 lines
4.6 KiB
Python
Executable File
150 lines
4.6 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# Copyright 2023 Xiaomi Corp. (authors: Fangjun Kuang
|
|
# Zengrui Jin)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
"""
|
|
This file computes fbank features of the THCHS-30 dataset.
|
|
It looks for manifests in the directory data/manifests/thchs30.
|
|
|
|
The generated fbank features are saved in data/fbank.
|
|
"""
|
|
|
|
import argparse
|
|
import logging
|
|
import os
|
|
from pathlib import Path
|
|
|
|
import torch
|
|
from lhotse import (
|
|
CutSet,
|
|
Fbank,
|
|
FbankConfig,
|
|
LilcomChunkyWriter,
|
|
WhisperFbank,
|
|
WhisperFbankConfig,
|
|
)
|
|
from lhotse.recipes.utils import read_manifests_if_cached
|
|
|
|
from icefall.utils import get_executor, str2bool
|
|
|
|
# Torch's multithreaded behavior needs to be disabled or
|
|
# it wastes a lot of CPU and slow things down.
|
|
# Do this outside of main() in case it needs to take effect
|
|
# even when we are not invoking the main (e.g. when spawning subprocesses).
|
|
torch.set_num_threads(1)
|
|
torch.set_num_interop_threads(1)
|
|
|
|
|
|
def compute_fbank_thchs30(
|
|
num_mel_bins: int = 80, speed_perturb: bool = False, whisper_fbank: bool = False
|
|
):
|
|
src_dir = Path("data/manifests/thchs30")
|
|
output_dir = Path("data/fbank")
|
|
num_jobs = min(15, os.cpu_count())
|
|
|
|
dataset_parts = (
|
|
"train",
|
|
"dev",
|
|
"test",
|
|
)
|
|
prefix = "thchs_30"
|
|
suffix = "jsonl.gz"
|
|
manifests = read_manifests_if_cached(
|
|
dataset_parts=dataset_parts,
|
|
output_dir=src_dir,
|
|
prefix=prefix,
|
|
suffix=suffix,
|
|
)
|
|
assert manifests is not None
|
|
|
|
assert len(manifests) == len(dataset_parts), (
|
|
len(manifests),
|
|
len(dataset_parts),
|
|
list(manifests.keys()),
|
|
dataset_parts,
|
|
)
|
|
|
|
if whisper_fbank:
|
|
extractor = WhisperFbank(
|
|
WhisperFbankConfig(num_filters=args.num_mel_bins, device="cuda")
|
|
)
|
|
else:
|
|
extractor = Fbank(FbankConfig(num_mel_bins=num_mel_bins))
|
|
|
|
with get_executor() as ex: # Initialize the executor only once.
|
|
for partition, m in manifests.items():
|
|
if (output_dir / f"{prefix}_cuts_{partition}.{suffix}").is_file():
|
|
logging.info(f"{partition} already exists - skipping.")
|
|
continue
|
|
logging.info(f"Processing {partition}")
|
|
cut_set = CutSet.from_manifests(
|
|
recordings=m["recordings"],
|
|
supervisions=m["supervisions"],
|
|
)
|
|
if "train" in partition:
|
|
cut_set = (
|
|
(cut_set + cut_set.perturb_speed(0.9) + cut_set.perturb_speed(1.1))
|
|
if speed_perturb
|
|
else cut_set
|
|
)
|
|
cut_set = cut_set.compute_and_store_features(
|
|
extractor=extractor,
|
|
storage_path=f"{output_dir}/{prefix}_feats_{partition}",
|
|
# when an executor is specified, make more partitions
|
|
num_jobs=num_jobs if ex is None else 80,
|
|
executor=ex,
|
|
storage_type=LilcomChunkyWriter,
|
|
)
|
|
cut_set.to_file(output_dir / f"{prefix}_cuts_{partition}.{suffix}")
|
|
|
|
|
|
def get_args():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument(
|
|
"--num-mel-bins",
|
|
type=int,
|
|
default=80,
|
|
help="""The number of mel bins for Fbank""",
|
|
)
|
|
parser.add_argument(
|
|
"--speed-perturb",
|
|
type=bool,
|
|
default=False,
|
|
help="Enable 0.9 and 1.1 speed perturbation for data augmentation. Default: False.",
|
|
)
|
|
parser.add_argument(
|
|
"--whisper-fbank",
|
|
type=str2bool,
|
|
default=False,
|
|
help="Use WhisperFbank instead of Fbank. Default: False.",
|
|
)
|
|
return parser.parse_args()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
|
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
|
|
|
args = get_args()
|
|
compute_fbank_thchs30(
|
|
num_mel_bins=args.num_mel_bins,
|
|
speed_perturb=args.speed_perturb,
|
|
whisper_fbank=args.whisper_fbank,
|
|
)
|