mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
593 lines
19 KiB
Python
Executable File
593 lines
19 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# Copyright 2021 Xiaomi Corporation (Author: Liyong Guo,
|
|
# Fangjun Kuang,
|
|
# Quandong Wang)
|
|
# 2023 Johns Hopkins University (Author: Dongji Gao)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import argparse
|
|
import logging
|
|
from collections import defaultdict
|
|
from pathlib import Path
|
|
from typing import Dict, List, Optional, Tuple
|
|
|
|
import k2
|
|
import torch
|
|
import torch.nn as nn
|
|
from asr_datamodule import LibriSpeechAsrDataModule
|
|
from conformer import Conformer
|
|
|
|
from icefall.checkpoint import (
|
|
average_checkpoints,
|
|
average_checkpoints_with_averaged_model,
|
|
find_checkpoints,
|
|
load_checkpoint,
|
|
)
|
|
from icefall.decode import get_lattice, one_best_decoding
|
|
from icefall.env import get_env_info
|
|
from icefall.lexicon import Lexicon
|
|
from icefall.utils import (
|
|
AttributeDict,
|
|
get_texts,
|
|
load_averaged_model,
|
|
setup_logger,
|
|
store_transcripts,
|
|
str2bool,
|
|
write_error_stats,
|
|
)
|
|
|
|
|
|
def get_parser():
|
|
parser = argparse.ArgumentParser(
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--otc-token",
|
|
type=str,
|
|
default="<star>",
|
|
help="OTC token",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--blank-bias",
|
|
type=float,
|
|
default=0,
|
|
help="bias (log-prob) added to blank token during decoding",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--epoch",
|
|
type=int,
|
|
default=20,
|
|
help="""It specifies the checkpoint to use for decoding.
|
|
Note: Epoch counts from 1.
|
|
You can specify --avg to use more checkpoints for model averaging.""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--iter",
|
|
type=int,
|
|
default=0,
|
|
help="""If positive, --epoch is ignored and it
|
|
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
|
You can specify --avg to use more checkpoints for model averaging.
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--avg",
|
|
type=int,
|
|
default=5,
|
|
help="Number of checkpoints to average. Automatically select "
|
|
"consecutive checkpoints before the checkpoint specified by "
|
|
"'--epoch' and '--iter'",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--method",
|
|
type=str,
|
|
default="ctc-greedy-search",
|
|
help="""Decoding method.
|
|
Supported values are:
|
|
- (0) 1best. Extract the best path from the decoding lattice as the
|
|
decoding result.
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--use-averaged-model",
|
|
type=str2bool,
|
|
default=True,
|
|
help="Whether to load averaged model. Currently it only supports "
|
|
"using --epoch. If True, it would decode with the averaged model "
|
|
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
|
"Actually only the models with epoch number of `epoch-avg` and "
|
|
"`epoch` are loaded for averaging. ",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--num-decoder-layers",
|
|
type=int,
|
|
default=0,
|
|
help="""Number of decoder layer of transformer decoder.
|
|
Setting this to 0 will not create the decoder at all (pure CTC model)
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--exp-dir",
|
|
type=str,
|
|
default="conformer_ctc2/exp",
|
|
help="The experiment dir",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--lang-dir",
|
|
type=str,
|
|
default="data/lang_phone",
|
|
help="The lang dir",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--lm-dir",
|
|
type=str,
|
|
default="data/lm",
|
|
help="""The n-gram LM dir.
|
|
It should contain either G_4_gram.pt or G_4_gram.fst.txt
|
|
""",
|
|
)
|
|
|
|
return parser
|
|
|
|
|
|
def get_params() -> AttributeDict:
|
|
params = AttributeDict(
|
|
{
|
|
# parameters for conformer
|
|
"subsampling_factor": 4,
|
|
"feature_dim": 80,
|
|
"nhead": 8,
|
|
"dim_feedforward": 2048,
|
|
"encoder_dim": 512,
|
|
"num_encoder_layers": 12,
|
|
# parameters for decoding
|
|
"search_beam": 20,
|
|
"output_beam": 8,
|
|
"min_active_states": 30,
|
|
"max_active_states": 10000,
|
|
"use_double_scores": True,
|
|
"env_info": get_env_info(),
|
|
}
|
|
)
|
|
return params
|
|
|
|
|
|
def remove_duplicates_and_blank(hyp: List[int]) -> List[int]:
|
|
# from https://github.com/wenet-e2e/wenet/blob/main/wenet/utils/common.py
|
|
new_hyp: List[int] = []
|
|
cur = 0
|
|
while cur < len(hyp):
|
|
if hyp[cur] != 0:
|
|
new_hyp.append(hyp[cur])
|
|
prev = cur
|
|
while cur < len(hyp) and hyp[cur] == hyp[prev]:
|
|
cur += 1
|
|
return new_hyp
|
|
|
|
|
|
def decode_one_batch(
|
|
params: AttributeDict,
|
|
model: nn.Module,
|
|
HLG: k2.Fsa,
|
|
batch: dict,
|
|
word_table: k2.SymbolTable,
|
|
G: Optional[k2.Fsa] = None,
|
|
) -> Dict[str, List[List[str]]]:
|
|
"""Decode one batch and return the result in a dict. The dict has the
|
|
following format:
|
|
|
|
- key: It indicates the setting used for decoding. For example,
|
|
if no rescoring is used, the key is the string `no_rescore`.
|
|
If LM rescoring is used, the key is the string `lm_scale_xxx`,
|
|
where `xxx` is the value of `lm_scale`. An example key is
|
|
`lm_scale_0.7`
|
|
- value: It contains the decoding result. `len(value)` equals to
|
|
batch size. `value[i]` is the decoding result for the i-th
|
|
utterance in the given batch.
|
|
Args:
|
|
params:
|
|
It's the return value of :func:`get_params`.
|
|
|
|
- params.method is "1best", it uses 1best decoding without LM rescoring.
|
|
|
|
model:
|
|
The neural model.
|
|
HLG:
|
|
The decoding graph. Used only when params.method is NOT ctc-decoding.
|
|
H:
|
|
The ctc topo. Used only when params.method is ctc-decoding.
|
|
bpe_model:
|
|
The BPE model. Used only when params.method is ctc-decoding.
|
|
batch:
|
|
It is the return value from iterating
|
|
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
|
|
for the format of the `batch`.
|
|
word_table:
|
|
The word symbol table.
|
|
G:
|
|
An LM. It is not None when params.method is "nbest-rescoring"
|
|
or "whole-lattice-rescoring". In general, the G in HLG
|
|
is a 3-gram LM, while this G is a 4-gram LM.
|
|
Returns:
|
|
Return the decoding result. See above description for the format of
|
|
the returned dict. Note: If it decodes to nothing, then return None.
|
|
"""
|
|
device = HLG.device
|
|
feature = batch["inputs"]
|
|
assert feature.ndim == 3
|
|
feature = feature.to(device)
|
|
# at entry, feature is (N, T, C)
|
|
|
|
supervisions = batch["supervisions"]
|
|
|
|
nnet_output, memory, memory_key_padding_mask = model(feature, supervisions)
|
|
# nnet_output is (N, T, C)
|
|
nnet_output[:, :, 0] += params.blank_bias
|
|
|
|
supervision_segments = torch.stack(
|
|
(
|
|
supervisions["sequence_idx"],
|
|
torch.div(
|
|
supervisions["start_frame"],
|
|
params.subsampling_factor,
|
|
rounding_mode="trunc",
|
|
),
|
|
torch.div(
|
|
supervisions["num_frames"],
|
|
params.subsampling_factor,
|
|
rounding_mode="trunc",
|
|
),
|
|
),
|
|
1,
|
|
).to(torch.int32)
|
|
|
|
decoding_graph = HLG
|
|
|
|
lattice = get_lattice(
|
|
nnet_output=nnet_output,
|
|
decoding_graph=decoding_graph,
|
|
supervision_segments=supervision_segments,
|
|
search_beam=params.search_beam,
|
|
output_beam=params.output_beam,
|
|
min_active_states=params.min_active_states,
|
|
max_active_states=params.max_active_states,
|
|
subsampling_factor=params.subsampling_factor + 2,
|
|
)
|
|
|
|
if params.method in ["1best"]:
|
|
best_path = one_best_decoding(
|
|
lattice=lattice, use_double_scores=params.use_double_scores
|
|
)
|
|
key = "no_rescore"
|
|
|
|
hyps = get_texts(best_path)
|
|
hyps = [[word_table[i] for i in ids] for ids in hyps]
|
|
|
|
return {key: hyps}
|
|
else:
|
|
assert False, f"Unsupported decoding method: {params.method}"
|
|
|
|
|
|
def decode_dataset(
|
|
dl: torch.utils.data.DataLoader,
|
|
params: AttributeDict,
|
|
model: nn.Module,
|
|
HLG: k2.Fsa,
|
|
word_table: k2.SymbolTable,
|
|
G: Optional[k2.Fsa] = None,
|
|
) -> Dict[str, List[Tuple[str, List[str], List[str]]]]:
|
|
"""Decode dataset.
|
|
|
|
Args:
|
|
dl:
|
|
PyTorch's dataloader containing the dataset to decode.
|
|
params:
|
|
It is returned by :func:`get_params`.
|
|
model:
|
|
The neural model.
|
|
HLG:
|
|
The decoding graph. Used only when params.method is NOT ctc-decoding.
|
|
H:
|
|
The ctc topo. Used only when params.method is ctc-decoding.
|
|
bpe_model:
|
|
The BPE model. Used only when params.method is ctc-decoding.
|
|
word_table:
|
|
It is the word symbol table.
|
|
sos_id:
|
|
The token ID for SOS.
|
|
eos_id:
|
|
The token ID for EOS.
|
|
G:
|
|
An LM. It is not None when params.method is "nbest-rescoring"
|
|
or "whole-lattice-rescoring". In general, the G in HLG
|
|
is a 3-gram LM, while this G is a 4-gram LM.
|
|
Returns:
|
|
Return a dict, whose key may be "no-rescore" if no LM rescoring
|
|
is used, or it may be "lm_scale_0.7" if LM rescoring is used.
|
|
Its value is a list of tuples. Each tuple contains two elements:
|
|
The first is the reference transcript, and the second is the
|
|
predicted result.
|
|
"""
|
|
num_cuts = 0
|
|
|
|
try:
|
|
num_batches = len(dl)
|
|
except TypeError:
|
|
num_batches = "?"
|
|
|
|
results = defaultdict(list)
|
|
for batch_idx, batch in enumerate(dl):
|
|
texts = batch["supervisions"]["text"]
|
|
cut_ids = [cut.id for cut in batch["supervisions"]["cut"]]
|
|
|
|
hyps_dict = decode_one_batch(
|
|
params=params,
|
|
model=model,
|
|
HLG=HLG,
|
|
batch=batch,
|
|
word_table=word_table,
|
|
G=G,
|
|
)
|
|
|
|
if hyps_dict is not None:
|
|
for lm_scale, hyps in hyps_dict.items():
|
|
this_batch = []
|
|
assert len(hyps) == len(texts)
|
|
for cut_id, hyp_words, ref_text in zip(cut_ids, hyps, texts):
|
|
ref_words = ref_text.split()
|
|
this_batch.append((cut_id, ref_words, hyp_words))
|
|
|
|
results[lm_scale].extend(this_batch)
|
|
else:
|
|
assert len(results) > 0, "It should not decode to empty in the first batch!"
|
|
this_batch = []
|
|
hyp_words = []
|
|
for ref_text in texts:
|
|
ref_words = ref_text.split()
|
|
this_batch.append((ref_words, hyp_words))
|
|
|
|
for lm_scale in results.keys():
|
|
results[lm_scale].extend(this_batch)
|
|
|
|
num_cuts += len(texts)
|
|
|
|
if batch_idx % 100 == 0:
|
|
batch_str = f"{batch_idx}/{num_batches}"
|
|
|
|
logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
|
|
return results
|
|
|
|
|
|
def save_results(
|
|
params: AttributeDict,
|
|
test_set_name: str,
|
|
results_dict: Dict[str, List[Tuple[str, List[str], List[str]]]],
|
|
):
|
|
if params.method in ("attention-decoder", "rnn-lm"):
|
|
# Set it to False since there are too many logs.
|
|
enable_log = False
|
|
else:
|
|
enable_log = True
|
|
test_set_wers = dict()
|
|
for key, results in results_dict.items():
|
|
recog_path = params.exp_dir / f"recogs-{test_set_name}-{key}.txt"
|
|
results = sorted(results)
|
|
store_transcripts(filename=recog_path, texts=results)
|
|
if enable_log:
|
|
logging.info(f"The transcripts are stored in {recog_path}")
|
|
|
|
# The following prints out WERs, per-word error statistics and aligned
|
|
# ref/hyp pairs.
|
|
errs_filename = params.exp_dir / f"errs-{test_set_name}-{key}.txt"
|
|
with open(errs_filename, "w") as f:
|
|
wer = write_error_stats(
|
|
f, f"{test_set_name}-{key}", results, enable_log=enable_log
|
|
)
|
|
test_set_wers[key] = wer
|
|
|
|
if enable_log:
|
|
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
|
|
|
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
|
errs_info = params.exp_dir / f"wer-summary-{test_set_name}.txt"
|
|
with open(errs_info, "w") as f:
|
|
print("settings\tWER", file=f)
|
|
for key, val in test_set_wers:
|
|
print("{}\t{}".format(key, val), file=f)
|
|
|
|
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
|
|
note = "\tbest for {}".format(test_set_name)
|
|
for key, val in test_set_wers:
|
|
s += "{}\t{}{}\n".format(key, val, note)
|
|
note = ""
|
|
logging.info(s)
|
|
|
|
|
|
@torch.no_grad()
|
|
def main():
|
|
parser = get_parser()
|
|
LibriSpeechAsrDataModule.add_arguments(parser)
|
|
args = parser.parse_args()
|
|
args.exp_dir = Path(args.exp_dir)
|
|
args.lang_dir = Path(args.lang_dir)
|
|
args.lm_dir = Path(args.lm_dir)
|
|
|
|
params = get_params()
|
|
params.update(vars(args))
|
|
|
|
setup_logger(f"{params.exp_dir}/log-{params.method}/log-decode")
|
|
logging.info("Decoding started")
|
|
logging.info(params)
|
|
|
|
lexicon = Lexicon(params.lang_dir)
|
|
# remove otc_token from decoding units
|
|
max_token_id = len(lexicon.tokens) - 1
|
|
num_classes = max_token_id + 1 # +1 for the blank
|
|
|
|
device = torch.device("cpu")
|
|
if torch.cuda.is_available():
|
|
device = torch.device("cuda", 0)
|
|
|
|
logging.info(f"device: {device}")
|
|
|
|
params.num_classes = num_classes
|
|
|
|
HLG = k2.Fsa.from_dict(torch.load(f"{params.lang_dir}/HLG.pt", map_location="cpu", weights_only=False))
|
|
HLG = HLG.to(device)
|
|
assert HLG.requires_grad is False
|
|
|
|
if not hasattr(HLG, "lm_scores"):
|
|
HLG.lm_scores = HLG.scores.clone()
|
|
|
|
G = None
|
|
|
|
model = Conformer(
|
|
num_features=params.feature_dim,
|
|
nhead=params.nhead,
|
|
d_model=params.encoder_dim,
|
|
num_classes=num_classes,
|
|
subsampling_factor=params.subsampling_factor,
|
|
num_encoder_layers=params.num_encoder_layers,
|
|
num_decoder_layers=params.num_decoder_layers,
|
|
)
|
|
|
|
if not params.use_averaged_model:
|
|
if params.iter > 0:
|
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
|
: params.avg
|
|
]
|
|
if len(filenames) == 0:
|
|
raise ValueError(
|
|
f"No checkpoints found for"
|
|
f" --iter {params.iter}, --avg {params.avg}"
|
|
)
|
|
elif len(filenames) < params.avg:
|
|
raise ValueError(
|
|
f"Not enough checkpoints ({len(filenames)}) found for"
|
|
f" --iter {params.iter}, --avg {params.avg}"
|
|
)
|
|
logging.info(f"averaging {filenames}")
|
|
model.to(device)
|
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
|
elif params.avg == 1:
|
|
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
|
else:
|
|
start = params.epoch - params.avg + 1
|
|
filenames = []
|
|
for i in range(start, params.epoch + 1):
|
|
if i >= 1:
|
|
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
|
logging.info(f"averaging {filenames}")
|
|
model.to(device)
|
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
|
else:
|
|
if params.iter > 0:
|
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
|
: params.avg + 1
|
|
]
|
|
if len(filenames) == 0:
|
|
raise ValueError(
|
|
f"No checkpoints found for"
|
|
f" --iter {params.iter}, --avg {params.avg}"
|
|
)
|
|
elif len(filenames) < params.avg + 1:
|
|
raise ValueError(
|
|
f"Not enough checkpoints ({len(filenames)}) found for"
|
|
f" --iter {params.iter}, --avg {params.avg}"
|
|
)
|
|
filename_start = filenames[-1]
|
|
filename_end = filenames[0]
|
|
logging.info(
|
|
"Calculating the averaged model over iteration checkpoints"
|
|
f" from {filename_start} (excluded) to {filename_end}"
|
|
)
|
|
model.to(device)
|
|
model.load_state_dict(
|
|
average_checkpoints_with_averaged_model(
|
|
filename_start=filename_start,
|
|
filename_end=filename_end,
|
|
device=device,
|
|
)
|
|
)
|
|
else:
|
|
assert params.avg > 0, params.avg
|
|
start = params.epoch - params.avg
|
|
assert start >= 1, start
|
|
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
|
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
|
logging.info(
|
|
f"Calculating the averaged model over epoch range from "
|
|
f"{start} (excluded) to {params.epoch}"
|
|
)
|
|
model.to(device)
|
|
model.load_state_dict(
|
|
average_checkpoints_with_averaged_model(
|
|
filename_start=filename_start,
|
|
filename_end=filename_end,
|
|
device=device,
|
|
)
|
|
)
|
|
|
|
model.to(device)
|
|
model.eval()
|
|
num_param = sum([p.numel() for p in model.parameters()])
|
|
logging.info(f"Number of model parameters: {num_param}")
|
|
|
|
# we need cut ids to display recognition results.
|
|
args.return_cuts = True
|
|
librispeech = LibriSpeechAsrDataModule(args)
|
|
|
|
test_clean_cuts = librispeech.test_clean_cuts()
|
|
test_other_cuts = librispeech.test_other_cuts()
|
|
|
|
test_clean_dl = librispeech.test_dataloaders(test_clean_cuts)
|
|
test_other_dl = librispeech.test_dataloaders(test_other_cuts)
|
|
|
|
test_sets = ["test-clean", "test-other"]
|
|
test_dl = [test_clean_dl, test_other_dl]
|
|
|
|
for test_set, test_dl in zip(test_sets, test_dl):
|
|
results_dict = decode_dataset(
|
|
dl=test_dl,
|
|
params=params,
|
|
model=model,
|
|
HLG=HLG,
|
|
word_table=lexicon.word_table,
|
|
)
|
|
|
|
save_results(params=params, test_set_name=test_set, results_dict=results_dict)
|
|
|
|
logging.info("Done!")
|
|
|
|
|
|
torch.set_num_threads(1)
|
|
torch.set_num_interop_threads(1)
|
|
|
|
if __name__ == "__main__":
|
|
main()
|