mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
643 lines
20 KiB
Python
Executable File
643 lines
20 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# Copyright 2021-2023 Xiaomi Corp. (authors: Fangjun Kuang,
|
|
# Wei Kang,
|
|
# Mingshuang Luo,
|
|
# Zengwei Yao,
|
|
# Yifan Yang,
|
|
# Daniel Povey)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
Usage:
|
|
|
|
export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7"
|
|
|
|
# For non-streaming model training:
|
|
./zipformer/finetune.py \
|
|
--world-size 8 \
|
|
--num-epochs 30 \
|
|
--start-epoch 1 \
|
|
--use-fp16 1 \
|
|
--exp-dir zipformer/exp \
|
|
--max-duration 1000
|
|
|
|
# For streaming model training:
|
|
./zipformer/fintune.py \
|
|
--world-size 8 \
|
|
--num-epochs 30 \
|
|
--start-epoch 1 \
|
|
--use-fp16 1 \
|
|
--exp-dir zipformer/exp \
|
|
--causal 1 \
|
|
--max-duration 1000
|
|
|
|
It supports training with:
|
|
- transducer loss (default), with `--use-transducer True --use-ctc False`
|
|
- ctc loss (not recommended), with `--use-transducer False --use-ctc True`
|
|
- transducer loss & ctc loss, with `--use-transducer True --use-ctc True`
|
|
"""
|
|
|
|
|
|
import argparse
|
|
import copy
|
|
import logging
|
|
import warnings
|
|
from pathlib import Path
|
|
from shutil import copyfile
|
|
from typing import Any, Dict, List, Optional, Tuple, Union
|
|
|
|
import k2
|
|
import optim
|
|
import sentencepiece as spm
|
|
import torch
|
|
import torch.multiprocessing as mp
|
|
import torch.nn as nn
|
|
from asr_datamodule import GigaSpeechAsrDataModule
|
|
from decoder import Decoder
|
|
from joiner import Joiner
|
|
from lhotse.cut import Cut, CutSet
|
|
from lhotse.dataset.sampling.base import CutSampler
|
|
from lhotse.utils import fix_random_seed
|
|
from model import AsrModel
|
|
from optim import Eden, ScaledAdam
|
|
from torch import Tensor
|
|
from torch.cuda.amp import GradScaler
|
|
from torch.nn.parallel import DistributedDataParallel as DDP
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
from train import (
|
|
add_model_arguments,
|
|
add_training_arguments,
|
|
compute_loss,
|
|
compute_validation_loss,
|
|
display_and_save_batch,
|
|
get_adjusted_batch_count,
|
|
get_model,
|
|
get_params,
|
|
load_checkpoint_if_available,
|
|
save_checkpoint,
|
|
scan_pessimistic_batches_for_oom,
|
|
set_batch_count,
|
|
)
|
|
|
|
from icefall import diagnostics
|
|
from icefall.checkpoint import remove_checkpoints
|
|
from icefall.checkpoint import save_checkpoint as save_checkpoint_impl
|
|
from icefall.checkpoint import (
|
|
save_checkpoint_with_global_batch_idx,
|
|
update_averaged_model,
|
|
)
|
|
from icefall.dist import cleanup_dist, setup_dist
|
|
from icefall.env import get_env_info
|
|
from icefall.err import raise_grad_scale_is_too_small_error
|
|
from icefall.hooks import register_inf_check_hooks
|
|
from icefall.utils import (
|
|
AttributeDict,
|
|
MetricsTracker,
|
|
get_parameter_groups_with_lrs,
|
|
setup_logger,
|
|
str2bool,
|
|
)
|
|
|
|
LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler]
|
|
|
|
|
|
def add_finetune_arguments(parser: argparse.ArgumentParser):
|
|
parser.add_argument(
|
|
"--use-mux",
|
|
type=str2bool,
|
|
default=False,
|
|
help="""
|
|
Whether to adapt. If true, we will mix 5% of the new data
|
|
with 95% of the original data to fine-tune.
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--init-modules",
|
|
type=str,
|
|
default=None,
|
|
help="""
|
|
Modules to be initialized. It matches all parameters starting with
|
|
a specific key. The keys are given with Comma seperated. If None,
|
|
all modules will be initialised. For example, if you only want to
|
|
initialise all parameters staring with "encoder", use "encoder";
|
|
if you want to initialise parameters starting with encoder or decoder,
|
|
use "encoder,joiner".
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--finetune-ckpt",
|
|
type=str,
|
|
default=None,
|
|
help="Fine-tuning from which checkpoint (a path to a .pt file)",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--continue-finetune",
|
|
type=str2bool,
|
|
default=False,
|
|
help="Continue finetuning or finetune from pre-trained model",
|
|
)
|
|
|
|
|
|
def get_parser():
|
|
parser = argparse.ArgumentParser(
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--bpe-model",
|
|
type=str,
|
|
default="data/lang_bpe_500/bpe.model",
|
|
help="Path to the BPE model",
|
|
)
|
|
|
|
add_training_arguments(parser)
|
|
add_model_arguments(parser)
|
|
add_finetune_arguments(parser)
|
|
|
|
return parser
|
|
|
|
|
|
def load_model_params(
|
|
ckpt: str, model: nn.Module, init_modules: List[str] = None, strict: bool = True
|
|
):
|
|
"""Load model params from checkpoint
|
|
|
|
Args:
|
|
ckpt (str): Path to the checkpoint
|
|
model (nn.Module): model to be loaded
|
|
|
|
"""
|
|
logging.info(f"Loading checkpoint from {ckpt}")
|
|
checkpoint = torch.load(ckpt, map_location="cpu", weights_only=False)
|
|
|
|
# if module list is empty, load the whole model from ckpt
|
|
if not init_modules:
|
|
if next(iter(checkpoint["model"])).startswith("module."):
|
|
logging.info("Loading checkpoint saved by DDP")
|
|
|
|
dst_state_dict = model.state_dict()
|
|
src_state_dict = checkpoint["model"]
|
|
for key in dst_state_dict.keys():
|
|
src_key = "{}.{}".format("module", key)
|
|
dst_state_dict[key] = src_state_dict.pop(src_key)
|
|
assert len(src_state_dict) == 0
|
|
model.load_state_dict(dst_state_dict, strict=strict)
|
|
else:
|
|
model.load_state_dict(checkpoint["model"], strict=strict)
|
|
else:
|
|
src_state_dict = checkpoint["model"]
|
|
dst_state_dict = model.state_dict()
|
|
for module in init_modules:
|
|
logging.info(f"Loading parameters starting with prefix {module}")
|
|
src_keys = [
|
|
k for k in src_state_dict.keys() if k.startswith(module.strip() + ".")
|
|
]
|
|
dst_keys = [
|
|
k for k in dst_state_dict.keys() if k.startswith(module.strip() + ".")
|
|
]
|
|
assert set(src_keys) == set(dst_keys) # two sets should match exactly
|
|
for key in src_keys:
|
|
dst_state_dict[key] = src_state_dict.pop(key)
|
|
|
|
model.load_state_dict(dst_state_dict, strict=strict)
|
|
|
|
return None
|
|
|
|
|
|
def train_one_epoch(
|
|
params: AttributeDict,
|
|
model: Union[nn.Module, DDP],
|
|
optimizer: torch.optim.Optimizer,
|
|
scheduler: LRSchedulerType,
|
|
sp: spm.SentencePieceProcessor,
|
|
train_dl: torch.utils.data.DataLoader,
|
|
valid_dl: torch.utils.data.DataLoader,
|
|
scaler: GradScaler,
|
|
model_avg: Optional[nn.Module] = None,
|
|
tb_writer: Optional[SummaryWriter] = None,
|
|
world_size: int = 1,
|
|
rank: int = 0,
|
|
) -> None:
|
|
"""Train the model for one epoch.
|
|
|
|
The training loss from the mean of all frames is saved in
|
|
`params.train_loss`. It runs the validation process every
|
|
`params.valid_interval` batches.
|
|
|
|
Args:
|
|
params:
|
|
It is returned by :func:`get_params`.
|
|
model:
|
|
The model for training.
|
|
optimizer:
|
|
The optimizer we are using.
|
|
scheduler:
|
|
The learning rate scheduler, we call step() every step.
|
|
train_dl:
|
|
Dataloader for the training dataset.
|
|
valid_dl:
|
|
Dataloader for the validation dataset.
|
|
scaler:
|
|
The scaler used for mix precision training.
|
|
model_avg:
|
|
The stored model averaged from the start of training.
|
|
tb_writer:
|
|
Writer to write log messages to tensorboard.
|
|
world_size:
|
|
Number of nodes in DDP training. If it is 1, DDP is disabled.
|
|
rank:
|
|
The rank of the node in DDP training. If no DDP is used, it should
|
|
be set to 0.
|
|
"""
|
|
model.train()
|
|
|
|
tot_loss = MetricsTracker()
|
|
|
|
saved_bad_model = False
|
|
|
|
def save_bad_model(suffix: str = ""):
|
|
save_checkpoint_impl(
|
|
filename=params.exp_dir / f"bad-model{suffix}-{rank}.pt",
|
|
model=model,
|
|
model_avg=model_avg,
|
|
params=params,
|
|
optimizer=optimizer,
|
|
scheduler=scheduler,
|
|
sampler=train_dl.sampler,
|
|
scaler=scaler,
|
|
rank=0,
|
|
)
|
|
|
|
for batch_idx, batch in enumerate(train_dl):
|
|
if batch_idx % 10 == 0:
|
|
set_batch_count(model, get_adjusted_batch_count(params) + 100000)
|
|
|
|
params.batch_idx_train += 1
|
|
batch_size = len(batch["supervisions"]["text"])
|
|
|
|
try:
|
|
with torch.cuda.amp.autocast(enabled=params.use_fp16):
|
|
loss, loss_info = compute_loss(
|
|
params=params,
|
|
model=model,
|
|
sp=sp,
|
|
batch=batch,
|
|
is_training=True,
|
|
)
|
|
# summary stats
|
|
tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info
|
|
|
|
# NOTE: We use reduction==sum and loss is computed over utterances
|
|
# in the batch and there is no normalization to it so far.
|
|
scaler.scale(loss).backward()
|
|
|
|
# if params.continue_finetune:
|
|
# set_batch_count(model, params.batch_idx_train)
|
|
# else:
|
|
# set_batch_count(model, params.batch_idx_train + 100000)
|
|
|
|
scheduler.step_batch(params.batch_idx_train)
|
|
|
|
scaler.step(optimizer)
|
|
scaler.update()
|
|
optimizer.zero_grad()
|
|
except: # noqa
|
|
save_bad_model()
|
|
display_and_save_batch(batch, params=params, sp=sp)
|
|
raise
|
|
|
|
if params.print_diagnostics and batch_idx == 5:
|
|
return
|
|
|
|
if (
|
|
rank == 0
|
|
and params.batch_idx_train > 0
|
|
and params.batch_idx_train % params.average_period == 0
|
|
):
|
|
update_averaged_model(
|
|
params=params,
|
|
model_cur=model,
|
|
model_avg=model_avg,
|
|
)
|
|
|
|
if (
|
|
params.batch_idx_train > 0
|
|
and params.batch_idx_train % params.save_every_n == 0
|
|
):
|
|
save_checkpoint_with_global_batch_idx(
|
|
out_dir=params.exp_dir,
|
|
global_batch_idx=params.batch_idx_train,
|
|
model=model,
|
|
model_avg=model_avg,
|
|
params=params,
|
|
optimizer=optimizer,
|
|
scheduler=scheduler,
|
|
sampler=train_dl.sampler,
|
|
scaler=scaler,
|
|
rank=rank,
|
|
)
|
|
remove_checkpoints(
|
|
out_dir=params.exp_dir,
|
|
topk=params.keep_last_k,
|
|
rank=rank,
|
|
)
|
|
|
|
if batch_idx % 100 == 0 and params.use_fp16:
|
|
# If the grad scale was less than 1, try increasing it. The _growth_interval
|
|
# of the grad scaler is configurable, but we can't configure it to have different
|
|
# behavior depending on the current grad scale.
|
|
cur_grad_scale = scaler._scale.item()
|
|
|
|
if cur_grad_scale < 8.0 or (cur_grad_scale < 32.0 and batch_idx % 400 == 0):
|
|
scaler.update(cur_grad_scale * 2.0)
|
|
if cur_grad_scale < 0.01:
|
|
if not saved_bad_model:
|
|
save_bad_model(suffix="-first-warning")
|
|
saved_bad_model = True
|
|
logging.warning(f"Grad scale is small: {cur_grad_scale}")
|
|
if cur_grad_scale < 1.0e-05:
|
|
save_bad_model()
|
|
raise_grad_scale_is_too_small_error(cur_grad_scale)
|
|
|
|
if batch_idx % params.log_interval == 0:
|
|
cur_lr = max(scheduler.get_last_lr())
|
|
cur_grad_scale = scaler._scale.item() if params.use_fp16 else 1.0
|
|
|
|
logging.info(
|
|
f"Epoch {params.cur_epoch}, "
|
|
f"batch {batch_idx}, loss[{loss_info}], "
|
|
f"tot_loss[{tot_loss}], batch size: {batch_size}, "
|
|
f"lr: {cur_lr:.2e}, "
|
|
+ (f"grad_scale: {scaler._scale.item()}" if params.use_fp16 else "")
|
|
)
|
|
|
|
if tb_writer is not None:
|
|
tb_writer.add_scalar(
|
|
"train/learning_rate", cur_lr, params.batch_idx_train
|
|
)
|
|
|
|
loss_info.write_summary(
|
|
tb_writer, "train/current_", params.batch_idx_train
|
|
)
|
|
tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train)
|
|
if params.use_fp16:
|
|
tb_writer.add_scalar(
|
|
"train/grad_scale", cur_grad_scale, params.batch_idx_train
|
|
)
|
|
|
|
if batch_idx % params.valid_interval == 0 and not params.print_diagnostics:
|
|
logging.info("Computing validation loss")
|
|
valid_info = compute_validation_loss(
|
|
params=params,
|
|
model=model,
|
|
sp=sp,
|
|
valid_dl=valid_dl,
|
|
world_size=world_size,
|
|
)
|
|
model.train()
|
|
logging.info(f"Epoch {params.cur_epoch}, validation: {valid_info}")
|
|
logging.info(
|
|
f"Maximum memory allocated so far is {torch.cuda.max_memory_allocated()//1000000}MB"
|
|
)
|
|
if tb_writer is not None:
|
|
valid_info.write_summary(
|
|
tb_writer, "train/valid_", params.batch_idx_train
|
|
)
|
|
|
|
loss_value = tot_loss["loss"] / tot_loss["frames"]
|
|
params.train_loss = loss_value
|
|
if params.train_loss < params.best_train_loss:
|
|
params.best_train_epoch = params.cur_epoch
|
|
params.best_train_loss = params.train_loss
|
|
|
|
|
|
def run(rank, world_size, args):
|
|
"""
|
|
Args:
|
|
rank:
|
|
It is a value between 0 and `world_size-1`, which is
|
|
passed automatically by `mp.spawn()` in :func:`main`.
|
|
The node with rank 0 is responsible for saving checkpoint.
|
|
world_size:
|
|
Number of GPUs for DDP training.
|
|
args:
|
|
The return value of get_parser().parse_args()
|
|
"""
|
|
params = get_params()
|
|
params.update(vars(args))
|
|
|
|
fix_random_seed(params.seed)
|
|
if world_size > 1:
|
|
setup_dist(rank, world_size, params.master_port)
|
|
|
|
setup_logger(f"{params.exp_dir}/log/log-train")
|
|
logging.info("Training started")
|
|
|
|
if args.tensorboard and rank == 0:
|
|
tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard")
|
|
else:
|
|
tb_writer = None
|
|
|
|
device = torch.device("cpu")
|
|
if torch.cuda.is_available():
|
|
device = torch.device("cuda", rank)
|
|
logging.info(f"Device: {device}")
|
|
|
|
sp = spm.SentencePieceProcessor()
|
|
sp.load(params.bpe_model)
|
|
|
|
# <blk> is defined in local/train_bpe_model.py
|
|
params.blank_id = sp.piece_to_id("<blk>")
|
|
params.vocab_size = sp.get_piece_size()
|
|
|
|
if not params.use_transducer:
|
|
params.ctc_loss_scale = 1.0
|
|
|
|
logging.info(params)
|
|
|
|
logging.info("About to create model")
|
|
model = get_model(params)
|
|
|
|
num_param = sum([p.numel() for p in model.parameters()])
|
|
logging.info(f"Number of model parameters: {num_param}")
|
|
|
|
assert params.save_every_n >= params.average_period
|
|
model_avg: Optional[nn.Module] = None
|
|
|
|
if params.continue_finetune:
|
|
assert params.start_epoch > 0, params.start_epoch
|
|
checkpoints = load_checkpoint_if_available(
|
|
params=params, model=model, model_avg=model_avg
|
|
)
|
|
else:
|
|
modules = params.init_modules.split(",") if params.init_modules else None
|
|
checkpoints = load_model_params(
|
|
ckpt=params.finetune_ckpt, model=model, init_modules=modules
|
|
)
|
|
if rank == 0:
|
|
# model_avg is only used with rank 0
|
|
model_avg = copy.deepcopy(model).to(torch.float64)
|
|
|
|
model.to(device)
|
|
if world_size > 1:
|
|
logging.info("Using DDP")
|
|
model = DDP(model, device_ids=[rank], find_unused_parameters=True)
|
|
|
|
optimizer = ScaledAdam(
|
|
get_parameter_groups_with_lrs(model, lr=params.base_lr, include_names=True),
|
|
lr=params.base_lr, # should have no effect
|
|
clipping_scale=2.0,
|
|
)
|
|
|
|
scheduler = Eden(optimizer, params.lr_batches, params.lr_epochs, warmup_start=1.0)
|
|
|
|
if checkpoints and "optimizer" in checkpoints:
|
|
logging.info("Loading optimizer state dict")
|
|
optimizer.load_state_dict(checkpoints["optimizer"])
|
|
|
|
if (
|
|
checkpoints
|
|
and "scheduler" in checkpoints
|
|
and checkpoints["scheduler"] is not None
|
|
):
|
|
logging.info("Loading scheduler state dict")
|
|
scheduler.load_state_dict(checkpoints["scheduler"])
|
|
|
|
if params.print_diagnostics:
|
|
opts = diagnostics.TensorDiagnosticOptions(
|
|
512
|
|
) # allow 4 megabytes per sub-module
|
|
diagnostic = diagnostics.attach_diagnostics(model, opts)
|
|
|
|
if params.inf_check:
|
|
register_inf_check_hooks(model)
|
|
|
|
def remove_short_utt(c: Cut):
|
|
# In ./zipformer.py, the conv module uses the following expression
|
|
# for subsampling
|
|
T = ((c.num_frames - 7) // 2 + 1) // 2
|
|
return T > 0
|
|
|
|
gigaspeech = GigaSpeechAsrDataModule(args)
|
|
|
|
if params.use_mux:
|
|
train_cuts = CutSet.mux(
|
|
gigaspeech.train_cuts(),
|
|
gigaspeech.fsc_train_cuts(),
|
|
weights=[0.9, 0.1],
|
|
)
|
|
else:
|
|
train_cuts = gigaspeech.fsc_train_cuts()
|
|
|
|
train_cuts = train_cuts.filter(remove_short_utt)
|
|
|
|
if params.start_batch > 0 and checkpoints and "sampler" in checkpoints:
|
|
# We only load the sampler's state dict when it loads a checkpoint
|
|
# saved in the middle of an epoch
|
|
sampler_state_dict = checkpoints["sampler"]
|
|
else:
|
|
sampler_state_dict = None
|
|
|
|
train_dl = gigaspeech.train_dataloaders(
|
|
train_cuts, sampler_state_dict=sampler_state_dict
|
|
)
|
|
|
|
valid_cuts = gigaspeech.fsc_valid_cuts()
|
|
valid_cuts = valid_cuts.filter(remove_short_utt)
|
|
valid_dl = gigaspeech.valid_dataloaders(valid_cuts)
|
|
|
|
if not params.print_diagnostics and params.scan_for_oom_batches:
|
|
scan_pessimistic_batches_for_oom(
|
|
model=model,
|
|
train_dl=train_dl,
|
|
optimizer=optimizer,
|
|
sp=sp,
|
|
params=params,
|
|
)
|
|
|
|
scaler = GradScaler(enabled=params.use_fp16, init_scale=1.0)
|
|
if checkpoints and "grad_scaler" in checkpoints:
|
|
logging.info("Loading grad scaler state dict")
|
|
scaler.load_state_dict(checkpoints["grad_scaler"])
|
|
|
|
for epoch in range(params.start_epoch, params.num_epochs + 1):
|
|
scheduler.step_epoch(epoch - 1)
|
|
fix_random_seed(params.seed + epoch - 1)
|
|
train_dl.sampler.set_epoch(epoch - 1)
|
|
|
|
if tb_writer is not None:
|
|
tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train)
|
|
|
|
params.cur_epoch = epoch
|
|
|
|
train_one_epoch(
|
|
params=params,
|
|
model=model,
|
|
model_avg=model_avg,
|
|
optimizer=optimizer,
|
|
scheduler=scheduler,
|
|
sp=sp,
|
|
train_dl=train_dl,
|
|
valid_dl=valid_dl,
|
|
scaler=scaler,
|
|
tb_writer=tb_writer,
|
|
world_size=world_size,
|
|
rank=rank,
|
|
)
|
|
|
|
if params.print_diagnostics:
|
|
diagnostic.print_diagnostics()
|
|
break
|
|
|
|
save_checkpoint(
|
|
params=params,
|
|
model=model,
|
|
model_avg=model_avg,
|
|
optimizer=optimizer,
|
|
scheduler=scheduler,
|
|
sampler=train_dl.sampler,
|
|
scaler=scaler,
|
|
rank=rank,
|
|
)
|
|
|
|
logging.info("Done!")
|
|
|
|
if world_size > 1:
|
|
torch.distributed.barrier()
|
|
cleanup_dist()
|
|
|
|
|
|
def main():
|
|
parser = get_parser()
|
|
GigaSpeechAsrDataModule.add_arguments(parser)
|
|
args = parser.parse_args()
|
|
args.exp_dir = Path(args.exp_dir)
|
|
|
|
world_size = args.world_size
|
|
assert world_size >= 1
|
|
if world_size > 1:
|
|
mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True)
|
|
else:
|
|
run(rank=0, world_size=1, args=args)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
torch.set_num_threads(1)
|
|
torch.set_num_interop_threads(1)
|
|
main()
|