mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
848 lines
27 KiB
Python
Executable File
848 lines
27 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
#
|
|
# Copyright 2021-2022 Xiaomi Corporation (Author: Fangjun Kuang,
|
|
# Liyong Guo,
|
|
# Quandong Wang,
|
|
# Zengwei Yao)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
Usage:
|
|
|
|
(1) ctc-decoding
|
|
./zipformer/ctc_decode.py \
|
|
--epoch 30 \
|
|
--avg 15 \
|
|
--exp-dir ./zipformer/exp \
|
|
--use-ctc 1 \
|
|
--max-duration 600 \
|
|
--decoding-method ctc-decoding
|
|
|
|
(2) 1best
|
|
./zipformer/ctc_decode.py \
|
|
--epoch 30 \
|
|
--avg 15 \
|
|
--exp-dir ./zipformer/exp \
|
|
--use-ctc 1 \
|
|
--max-duration 600 \
|
|
--hlg-scale 0.6 \
|
|
--decoding-method 1best
|
|
|
|
(3) nbest
|
|
./zipformer/ctc_decode.py \
|
|
--epoch 30 \
|
|
--avg 15 \
|
|
--exp-dir ./zipformer/exp \
|
|
--use-ctc 1 \
|
|
--max-duration 600 \
|
|
--hlg-scale 0.6 \
|
|
--decoding-method nbest
|
|
|
|
(4) nbest-rescoring
|
|
./zipformer/ctc_decode.py \
|
|
--epoch 30 \
|
|
--avg 15 \
|
|
--exp-dir ./zipformer/exp \
|
|
--use-ctc 1 \
|
|
--max-duration 600 \
|
|
--hlg-scale 0.6 \
|
|
--nbest-scale 1.0 \
|
|
--lm-dir data/lm \
|
|
--decoding-method nbest-rescoring
|
|
|
|
(5) whole-lattice-rescoring
|
|
./zipformer/ctc_decode.py \
|
|
--epoch 30 \
|
|
--avg 15 \
|
|
--exp-dir ./zipformer/exp \
|
|
--use-ctc 1 \
|
|
--max-duration 600 \
|
|
--hlg-scale 0.6 \
|
|
--nbest-scale 1.0 \
|
|
--lm-dir data/lm \
|
|
--decoding-method whole-lattice-rescoring
|
|
"""
|
|
|
|
|
|
import argparse
|
|
import logging
|
|
import math
|
|
from collections import defaultdict
|
|
from pathlib import Path
|
|
from typing import Dict, List, Optional, Tuple
|
|
|
|
import k2
|
|
import sentencepiece as spm
|
|
import torch
|
|
import torch.nn as nn
|
|
from asr_datamodule import GigaSpeechAsrDataModule
|
|
from train import add_model_arguments, get_model, get_params
|
|
|
|
from icefall.checkpoint import (
|
|
average_checkpoints,
|
|
average_checkpoints_with_averaged_model,
|
|
find_checkpoints,
|
|
load_checkpoint,
|
|
)
|
|
from icefall.decode import (
|
|
get_lattice,
|
|
nbest_decoding,
|
|
nbest_oracle,
|
|
one_best_decoding,
|
|
rescore_with_n_best_list,
|
|
rescore_with_whole_lattice,
|
|
)
|
|
from icefall.lexicon import Lexicon
|
|
from icefall.utils import (
|
|
AttributeDict,
|
|
get_texts,
|
|
setup_logger,
|
|
store_transcripts,
|
|
str2bool,
|
|
write_error_stats,
|
|
)
|
|
|
|
LOG_EPS = math.log(1e-10)
|
|
|
|
|
|
def get_parser():
|
|
parser = argparse.ArgumentParser(
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--epoch",
|
|
type=int,
|
|
default=30,
|
|
help="""It specifies the checkpoint to use for decoding.
|
|
Note: Epoch counts from 1.
|
|
You can specify --avg to use more checkpoints for model averaging.""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--iter",
|
|
type=int,
|
|
default=0,
|
|
help="""If positive, --epoch is ignored and it
|
|
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
|
You can specify --avg to use more checkpoints for model averaging.
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--avg",
|
|
type=int,
|
|
default=15,
|
|
help="Number of checkpoints to average. Automatically select "
|
|
"consecutive checkpoints before the checkpoint specified by "
|
|
"'--epoch' and '--iter'",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--use-averaged-model",
|
|
type=str2bool,
|
|
default=True,
|
|
help="Whether to load averaged model. Currently it only supports "
|
|
"using --epoch. If True, it would decode with the averaged model "
|
|
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
|
"Actually only the models with epoch number of `epoch-avg` and "
|
|
"`epoch` are loaded for averaging. ",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--exp-dir",
|
|
type=str,
|
|
default="zipformer/exp",
|
|
help="The experiment dir",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--bpe-model",
|
|
type=str,
|
|
default="data/lang_bpe_500/bpe.model",
|
|
help="Path to the BPE model",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--lang-dir",
|
|
type=Path,
|
|
default="data/lang_bpe_500",
|
|
help="The lang dir containing word table and LG graph",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--context-size",
|
|
type=int,
|
|
default=2,
|
|
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--decoding-method",
|
|
type=str,
|
|
default="ctc-decoding",
|
|
help="""Decoding method.
|
|
Supported values are:
|
|
- (1) ctc-decoding. Use CTC decoding. It uses a sentence piece
|
|
model, i.e., lang_dir/bpe.model, to convert word pieces to words.
|
|
It needs neither a lexicon nor an n-gram LM.
|
|
- (2) 1best. Extract the best path from the decoding lattice as the
|
|
decoding result.
|
|
- (3) nbest. Extract n paths from the decoding lattice; the path
|
|
with the highest score is the decoding result.
|
|
- (4) nbest-rescoring. Extract n paths from the decoding lattice,
|
|
rescore them with an n-gram LM (e.g., a 4-gram LM), the path with
|
|
the highest score is the decoding result.
|
|
- (5) whole-lattice-rescoring. Rescore the decoding lattice with an
|
|
n-gram LM (e.g., a 4-gram LM), the best path of rescored lattice
|
|
is the decoding result.
|
|
you have trained an RNN LM using ./rnn_lm/train.py
|
|
- (6) nbest-oracle. Its WER is the lower bound of any n-best
|
|
rescoring method can achieve. Useful for debugging n-best
|
|
rescoring method.
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--num-paths",
|
|
type=int,
|
|
default=100,
|
|
help="""Number of paths for n-best based decoding method.
|
|
Used only when "method" is one of the following values:
|
|
nbest, nbest-rescoring, and nbest-oracle
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--nbest-scale",
|
|
type=float,
|
|
default=1.0,
|
|
help="""The scale to be applied to `lattice.scores`.
|
|
It's needed if you use any kinds of n-best based rescoring.
|
|
Used only when "method" is one of the following values:
|
|
nbest, nbest-rescoring, and nbest-oracle
|
|
A smaller value results in more unique paths.
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--hlg-scale",
|
|
type=float,
|
|
default=0.6,
|
|
help="""The scale to be applied to `hlg.scores`.
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--lm-dir",
|
|
type=str,
|
|
default="data/lm",
|
|
help="""The n-gram LM dir.
|
|
It should contain either G_4_gram.pt or G_4_gram.fst.txt
|
|
""",
|
|
)
|
|
|
|
add_model_arguments(parser)
|
|
|
|
return parser
|
|
|
|
|
|
def get_decoding_params() -> AttributeDict:
|
|
"""Parameters for decoding."""
|
|
params = AttributeDict(
|
|
{
|
|
"frame_shift_ms": 10,
|
|
"search_beam": 20,
|
|
"output_beam": 8,
|
|
"min_active_states": 30,
|
|
"max_active_states": 10000,
|
|
"use_double_scores": True,
|
|
}
|
|
)
|
|
return params
|
|
|
|
|
|
def decode_one_batch(
|
|
params: AttributeDict,
|
|
model: nn.Module,
|
|
HLG: Optional[k2.Fsa],
|
|
H: Optional[k2.Fsa],
|
|
bpe_model: Optional[spm.SentencePieceProcessor],
|
|
batch: dict,
|
|
word_table: k2.SymbolTable,
|
|
G: Optional[k2.Fsa] = None,
|
|
) -> Dict[str, List[List[str]]]:
|
|
"""Decode one batch and return the result in a dict. The dict has the
|
|
following format:
|
|
- key: It indicates the setting used for decoding. For example,
|
|
if no rescoring is used, the key is the string `no_rescore`.
|
|
If LM rescoring is used, the key is the string `lm_scale_xxx`,
|
|
where `xxx` is the value of `lm_scale`. An example key is
|
|
`lm_scale_0.7`
|
|
- value: It contains the decoding result. `len(value)` equals to
|
|
batch size. `value[i]` is the decoding result for the i-th
|
|
utterance in the given batch.
|
|
|
|
Args:
|
|
params:
|
|
It's the return value of :func:`get_params`.
|
|
|
|
- params.decoding_method is "1best", it uses 1best decoding without LM rescoring.
|
|
- params.decoding_method is "nbest", it uses nbest decoding without LM rescoring.
|
|
- params.decoding_method is "nbest-rescoring", it uses nbest LM rescoring.
|
|
- params.decoding_method is "whole-lattice-rescoring", it uses whole lattice LM
|
|
rescoring.
|
|
|
|
model:
|
|
The neural model.
|
|
HLG:
|
|
The decoding graph. Used only when params.decoding_method is NOT ctc-decoding.
|
|
H:
|
|
The ctc topo. Used only when params.decoding_method is ctc-decoding.
|
|
bpe_model:
|
|
The BPE model. Used only when params.decoding_method is ctc-decoding.
|
|
batch:
|
|
It is the return value from iterating
|
|
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
|
|
for the format of the `batch`.
|
|
word_table:
|
|
The word symbol table.
|
|
G:
|
|
An LM. It is not None when params.decoding_method is "nbest-rescoring"
|
|
or "whole-lattice-rescoring". In general, the G in HLG
|
|
is a 3-gram LM, while this G is a 4-gram LM.
|
|
Returns:
|
|
Return the decoding result. See above description for the format of
|
|
the returned dict. Note: If it decodes to nothing, then return None.
|
|
"""
|
|
if HLG is not None:
|
|
device = HLG.device
|
|
else:
|
|
device = H.device
|
|
feature = batch["inputs"]
|
|
assert feature.ndim == 3
|
|
feature = feature.to(device)
|
|
# at entry, feature is (N, T, C)
|
|
|
|
supervisions = batch["supervisions"]
|
|
feature_lens = supervisions["num_frames"].to(device)
|
|
|
|
if params.causal:
|
|
# this seems to cause insertions at the end of the utterance if used with zipformer.
|
|
pad_len = 30
|
|
feature_lens += pad_len
|
|
feature = torch.nn.functional.pad(
|
|
feature,
|
|
pad=(0, 0, 0, pad_len),
|
|
value=LOG_EPS,
|
|
)
|
|
|
|
encoder_out, encoder_out_lens = model.forward_encoder(feature, feature_lens)
|
|
ctc_output = model.ctc_output(encoder_out) # (N, T, C)
|
|
|
|
supervision_segments = torch.stack(
|
|
(
|
|
supervisions["sequence_idx"],
|
|
torch.div(
|
|
supervisions["start_frame"],
|
|
params.subsampling_factor,
|
|
rounding_mode="floor",
|
|
),
|
|
torch.div(
|
|
supervisions["num_frames"],
|
|
params.subsampling_factor,
|
|
rounding_mode="floor",
|
|
),
|
|
),
|
|
1,
|
|
).to(torch.int32)
|
|
|
|
if H is None:
|
|
assert HLG is not None
|
|
decoding_graph = HLG
|
|
else:
|
|
assert HLG is None
|
|
assert bpe_model is not None
|
|
decoding_graph = H
|
|
|
|
lattice = get_lattice(
|
|
nnet_output=ctc_output,
|
|
decoding_graph=decoding_graph,
|
|
supervision_segments=supervision_segments,
|
|
search_beam=params.search_beam,
|
|
output_beam=params.output_beam,
|
|
min_active_states=params.min_active_states,
|
|
max_active_states=params.max_active_states,
|
|
subsampling_factor=params.subsampling_factor,
|
|
)
|
|
|
|
if params.decoding_method == "ctc-decoding":
|
|
best_path = one_best_decoding(
|
|
lattice=lattice, use_double_scores=params.use_double_scores
|
|
)
|
|
# Note: `best_path.aux_labels` contains token IDs, not word IDs
|
|
# since we are using H, not HLG here.
|
|
#
|
|
# token_ids is a lit-of-list of IDs
|
|
token_ids = get_texts(best_path)
|
|
|
|
# hyps is a list of str, e.g., ['xxx yyy zzz', ...]
|
|
hyps = bpe_model.decode(token_ids)
|
|
|
|
# hyps is a list of list of str, e.g., [['xxx', 'yyy', 'zzz'], ... ]
|
|
hyps = [s.split() for s in hyps]
|
|
key = "ctc-decoding"
|
|
return {key: hyps}
|
|
|
|
if params.decoding_method == "nbest-oracle":
|
|
# Note: You can also pass rescored lattices to it.
|
|
# We choose the HLG decoded lattice for speed reasons
|
|
# as HLG decoding is faster and the oracle WER
|
|
# is only slightly worse than that of rescored lattices.
|
|
best_path = nbest_oracle(
|
|
lattice=lattice,
|
|
num_paths=params.num_paths,
|
|
ref_texts=supervisions["text"],
|
|
word_table=word_table,
|
|
nbest_scale=params.nbest_scale,
|
|
oov="<UNK>",
|
|
)
|
|
hyps = get_texts(best_path)
|
|
hyps = [[word_table[i] for i in ids] for ids in hyps]
|
|
key = f"oracle_{params.num_paths}_nbest_scale_{params.nbest_scale}" # noqa
|
|
return {key: hyps}
|
|
|
|
if params.decoding_method in ["1best", "nbest"]:
|
|
if params.decoding_method == "1best":
|
|
best_path = one_best_decoding(
|
|
lattice=lattice, use_double_scores=params.use_double_scores
|
|
)
|
|
key = "no_rescore"
|
|
else:
|
|
best_path = nbest_decoding(
|
|
lattice=lattice,
|
|
num_paths=params.num_paths,
|
|
use_double_scores=params.use_double_scores,
|
|
nbest_scale=params.nbest_scale,
|
|
)
|
|
key = f"no_rescore-nbest-scale-{params.nbest_scale}-{params.num_paths}" # noqa
|
|
|
|
hyps = get_texts(best_path)
|
|
hyps = [[word_table[i] for i in ids] for ids in hyps]
|
|
return {key: hyps}
|
|
|
|
assert params.decoding_method in [
|
|
"nbest-rescoring",
|
|
"whole-lattice-rescoring",
|
|
]
|
|
|
|
lm_scale_list = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7]
|
|
lm_scale_list += [0.8, 0.9, 1.0, 1.1, 1.2, 1.3]
|
|
lm_scale_list += [1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0]
|
|
|
|
if params.decoding_method == "nbest-rescoring":
|
|
best_path_dict = rescore_with_n_best_list(
|
|
lattice=lattice,
|
|
G=G,
|
|
num_paths=params.num_paths,
|
|
lm_scale_list=lm_scale_list,
|
|
nbest_scale=params.nbest_scale,
|
|
)
|
|
elif params.decoding_method == "whole-lattice-rescoring":
|
|
best_path_dict = rescore_with_whole_lattice(
|
|
lattice=lattice,
|
|
G_with_epsilon_loops=G,
|
|
lm_scale_list=lm_scale_list,
|
|
)
|
|
else:
|
|
assert False, f"Unsupported decoding method: {params.decoding_method}"
|
|
|
|
ans = dict()
|
|
if best_path_dict is not None:
|
|
for lm_scale_str, best_path in best_path_dict.items():
|
|
hyps = get_texts(best_path)
|
|
hyps = [[word_table[i] for i in ids] for ids in hyps]
|
|
ans[lm_scale_str] = hyps
|
|
else:
|
|
ans = None
|
|
return ans
|
|
|
|
|
|
def decode_dataset(
|
|
dl: torch.utils.data.DataLoader,
|
|
params: AttributeDict,
|
|
model: nn.Module,
|
|
HLG: Optional[k2.Fsa],
|
|
H: Optional[k2.Fsa],
|
|
bpe_model: Optional[spm.SentencePieceProcessor],
|
|
word_table: k2.SymbolTable,
|
|
G: Optional[k2.Fsa] = None,
|
|
) -> Dict[str, List[Tuple[str, List[str], List[str]]]]:
|
|
"""Decode dataset.
|
|
|
|
Args:
|
|
dl:
|
|
PyTorch's dataloader containing the dataset to decode.
|
|
params:
|
|
It is returned by :func:`get_params`.
|
|
model:
|
|
The neural model.
|
|
HLG:
|
|
The decoding graph. Used only when params.decoding_method is NOT ctc-decoding.
|
|
H:
|
|
The ctc topo. Used only when params.decoding_method is ctc-decoding.
|
|
bpe_model:
|
|
The BPE model. Used only when params.decoding_method is ctc-decoding.
|
|
word_table:
|
|
It is the word symbol table.
|
|
G:
|
|
An LM. It is not None when params.decoding_method is "nbest-rescoring"
|
|
or "whole-lattice-rescoring". In general, the G in HLG
|
|
is a 3-gram LM, while this G is a 4-gram LM.
|
|
Returns:
|
|
Return a dict, whose key may be "no-rescore" if no LM rescoring
|
|
is used, or it may be "lm_scale_0.7" if LM rescoring is used.
|
|
Its value is a list of tuples. Each tuple contains two elements:
|
|
The first is the reference transcript, and the second is the
|
|
predicted result.
|
|
"""
|
|
num_cuts = 0
|
|
|
|
try:
|
|
num_batches = len(dl)
|
|
except TypeError:
|
|
num_batches = "?"
|
|
|
|
results = defaultdict(list)
|
|
for batch_idx, batch in enumerate(dl):
|
|
texts = batch["supervisions"]["text"]
|
|
cut_ids = [cut.id for cut in batch["supervisions"]["cut"]]
|
|
|
|
hyps_dict = decode_one_batch(
|
|
params=params,
|
|
model=model,
|
|
HLG=HLG,
|
|
H=H,
|
|
bpe_model=bpe_model,
|
|
batch=batch,
|
|
word_table=word_table,
|
|
G=G,
|
|
)
|
|
|
|
for name, hyps in hyps_dict.items():
|
|
this_batch = []
|
|
assert len(hyps) == len(texts)
|
|
for cut_id, hyp_words, ref_text in zip(cut_ids, hyps, texts):
|
|
ref_words = ref_text.split()
|
|
this_batch.append((cut_id, ref_words, hyp_words))
|
|
|
|
results[name].extend(this_batch)
|
|
|
|
num_cuts += len(texts)
|
|
|
|
if batch_idx % 100 == 0:
|
|
batch_str = f"{batch_idx}/{num_batches}"
|
|
|
|
logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
|
|
return results
|
|
|
|
|
|
def save_results(
|
|
params: AttributeDict,
|
|
test_set_name: str,
|
|
results_dict: Dict[str, List[Tuple[str, List[str], List[str]]]],
|
|
):
|
|
test_set_wers = dict()
|
|
for key, results in results_dict.items():
|
|
recog_path = params.res_dir / f"recogs-{test_set_name}-{params.suffix}.txt"
|
|
results = sorted(results)
|
|
store_transcripts(filename=recog_path, texts=results)
|
|
logging.info(f"The transcripts are stored in {recog_path}")
|
|
|
|
# The following prints out WERs, per-word error statistics and aligned
|
|
# ref/hyp pairs.
|
|
errs_filename = params.res_dir / f"errs-{test_set_name}-{params.suffix}.txt"
|
|
with open(errs_filename, "w") as f:
|
|
wer = write_error_stats(f, f"{test_set_name}-{key}", results)
|
|
test_set_wers[key] = wer
|
|
|
|
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
|
|
|
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
|
errs_info = params.res_dir / f"wer-summary-{test_set_name}-{params.suffix}.txt"
|
|
with open(errs_info, "w") as f:
|
|
print("settings\tWER", file=f)
|
|
for key, val in test_set_wers:
|
|
print("{}\t{}".format(key, val), file=f)
|
|
|
|
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
|
|
note = "\tbest for {}".format(test_set_name)
|
|
for key, val in test_set_wers:
|
|
s += "{}\t{}{}\n".format(key, val, note)
|
|
note = ""
|
|
logging.info(s)
|
|
|
|
|
|
@torch.no_grad()
|
|
def main():
|
|
parser = get_parser()
|
|
GigaSpeechAsrDataModule.add_arguments(parser)
|
|
args = parser.parse_args()
|
|
args.exp_dir = Path(args.exp_dir)
|
|
args.lang_dir = Path(args.lang_dir)
|
|
args.lm_dir = Path(args.lm_dir)
|
|
|
|
params = get_params()
|
|
# add decoding params
|
|
params.update(get_decoding_params())
|
|
params.update(vars(args))
|
|
|
|
assert params.decoding_method in (
|
|
"ctc-decoding",
|
|
"1best",
|
|
"nbest",
|
|
"nbest-rescoring",
|
|
"whole-lattice-rescoring",
|
|
"nbest-oracle",
|
|
)
|
|
params.res_dir = params.exp_dir / params.decoding_method
|
|
|
|
if params.iter > 0:
|
|
params.suffix = f"iter-{params.iter}-avg-{params.avg}"
|
|
else:
|
|
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
|
|
|
if params.causal:
|
|
assert (
|
|
"," not in params.chunk_size
|
|
), "chunk_size should be one value in decoding."
|
|
assert (
|
|
"," not in params.left_context_frames
|
|
), "left_context_frames should be one value in decoding."
|
|
params.suffix += f"-chunk-{params.chunk_size}"
|
|
params.suffix += f"-left-context-{params.left_context_frames}"
|
|
|
|
if params.use_averaged_model:
|
|
params.suffix += "-use-averaged-model"
|
|
|
|
setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
|
|
logging.info("Decoding started")
|
|
|
|
device = torch.device("cpu")
|
|
if torch.cuda.is_available():
|
|
device = torch.device("cuda", 0)
|
|
|
|
logging.info(f"Device: {device}")
|
|
logging.info(params)
|
|
|
|
lexicon = Lexicon(params.lang_dir)
|
|
max_token_id = max(lexicon.tokens)
|
|
num_classes = max_token_id + 1 # +1 for the blank
|
|
|
|
params.vocab_size = num_classes
|
|
# <blk> and <unk> are defined in local/train_bpe_model.py
|
|
params.blank_id = 0
|
|
|
|
if params.decoding_method == "ctc-decoding":
|
|
HLG = None
|
|
H = k2.ctc_topo(
|
|
max_token=max_token_id,
|
|
modified=False,
|
|
device=device,
|
|
)
|
|
bpe_model = spm.SentencePieceProcessor()
|
|
bpe_model.load(str(params.lang_dir / "bpe.model"))
|
|
else:
|
|
H = None
|
|
bpe_model = None
|
|
HLG = k2.Fsa.from_dict(
|
|
torch.load(f"{params.lang_dir}/HLG.pt", map_location=device, weights_only=False)
|
|
)
|
|
assert HLG.requires_grad is False
|
|
|
|
HLG.scores *= params.hlg_scale
|
|
if not hasattr(HLG, "lm_scores"):
|
|
HLG.lm_scores = HLG.scores.clone()
|
|
|
|
if params.decoding_method in (
|
|
"nbest-rescoring",
|
|
"whole-lattice-rescoring",
|
|
):
|
|
if not (params.lm_dir / "G_4_gram.pt").is_file():
|
|
logging.info("Loading G_4_gram.fst.txt")
|
|
logging.warning("It may take 8 minutes.")
|
|
with open(params.lm_dir / "G_4_gram.fst.txt") as f:
|
|
first_word_disambig_id = lexicon.word_table["#0"]
|
|
|
|
G = k2.Fsa.from_openfst(f.read(), acceptor=False)
|
|
# G.aux_labels is not needed in later computations, so
|
|
# remove it here.
|
|
del G.aux_labels
|
|
# CAUTION: The following line is crucial.
|
|
# Arcs entering the back-off state have label equal to #0.
|
|
# We have to change it to 0 here.
|
|
G.labels[G.labels >= first_word_disambig_id] = 0
|
|
# See https://github.com/k2-fsa/k2/issues/874
|
|
# for why we need to set G.properties to None
|
|
G.__dict__["_properties"] = None
|
|
G = k2.Fsa.from_fsas([G]).to(device)
|
|
G = k2.arc_sort(G)
|
|
# Save a dummy value so that it can be loaded in C++.
|
|
# See https://github.com/pytorch/pytorch/issues/67902
|
|
# for why we need to do this.
|
|
G.dummy = 1
|
|
|
|
torch.save(G.as_dict(), params.lm_dir / "G_4_gram.pt")
|
|
else:
|
|
logging.info("Loading pre-compiled G_4_gram.pt")
|
|
d = torch.load(params.lm_dir / "G_4_gram.pt", map_location=device, weights_only=False)
|
|
G = k2.Fsa.from_dict(d)
|
|
|
|
if params.decoding_method == "whole-lattice-rescoring":
|
|
# Add epsilon self-loops to G as we will compose
|
|
# it with the whole lattice later
|
|
G = k2.add_epsilon_self_loops(G)
|
|
G = k2.arc_sort(G)
|
|
G = G.to(device)
|
|
|
|
# G.lm_scores is used to replace HLG.lm_scores during
|
|
# LM rescoring.
|
|
G.lm_scores = G.scores.clone()
|
|
else:
|
|
G = None
|
|
|
|
logging.info("About to create model")
|
|
model = get_model(params)
|
|
|
|
if not params.use_averaged_model:
|
|
if params.iter > 0:
|
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
|
: params.avg
|
|
]
|
|
if len(filenames) == 0:
|
|
raise ValueError(
|
|
f"No checkpoints found for"
|
|
f" --iter {params.iter}, --avg {params.avg}"
|
|
)
|
|
elif len(filenames) < params.avg:
|
|
raise ValueError(
|
|
f"Not enough checkpoints ({len(filenames)}) found for"
|
|
f" --iter {params.iter}, --avg {params.avg}"
|
|
)
|
|
logging.info(f"averaging {filenames}")
|
|
model.to(device)
|
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
|
elif params.avg == 1:
|
|
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
|
else:
|
|
start = params.epoch - params.avg + 1
|
|
filenames = []
|
|
for i in range(start, params.epoch + 1):
|
|
if i >= 1:
|
|
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
|
logging.info(f"averaging {filenames}")
|
|
model.to(device)
|
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
|
else:
|
|
if params.iter > 0:
|
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
|
: params.avg + 1
|
|
]
|
|
if len(filenames) == 0:
|
|
raise ValueError(
|
|
f"No checkpoints found for"
|
|
f" --iter {params.iter}, --avg {params.avg}"
|
|
)
|
|
elif len(filenames) < params.avg + 1:
|
|
raise ValueError(
|
|
f"Not enough checkpoints ({len(filenames)}) found for"
|
|
f" --iter {params.iter}, --avg {params.avg}"
|
|
)
|
|
filename_start = filenames[-1]
|
|
filename_end = filenames[0]
|
|
logging.info(
|
|
"Calculating the averaged model over iteration checkpoints"
|
|
f" from {filename_start} (excluded) to {filename_end}"
|
|
)
|
|
model.to(device)
|
|
model.load_state_dict(
|
|
average_checkpoints_with_averaged_model(
|
|
filename_start=filename_start,
|
|
filename_end=filename_end,
|
|
device=device,
|
|
)
|
|
)
|
|
else:
|
|
assert params.avg > 0, params.avg
|
|
start = params.epoch - params.avg
|
|
assert start >= 1, start
|
|
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
|
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
|
logging.info(
|
|
f"Calculating the averaged model over epoch range from "
|
|
f"{start} (excluded) to {params.epoch}"
|
|
)
|
|
model.to(device)
|
|
model.load_state_dict(
|
|
average_checkpoints_with_averaged_model(
|
|
filename_start=filename_start,
|
|
filename_end=filename_end,
|
|
device=device,
|
|
)
|
|
)
|
|
|
|
model.to(device)
|
|
model.eval()
|
|
|
|
num_param = sum([p.numel() for p in model.parameters()])
|
|
logging.info(f"Number of model parameters: {num_param}")
|
|
|
|
# we need cut ids to display recognition results.
|
|
args.return_cuts = True
|
|
gigaspeech = GigaSpeechAsrDataModule(args)
|
|
|
|
test_clean_cuts = gigaspeech.test_clean_cuts()
|
|
test_other_cuts = gigaspeech.test_other_cuts()
|
|
|
|
test_clean_dl = gigaspeech.test_dataloaders(test_clean_cuts)
|
|
test_other_dl = gigaspeech.test_dataloaders(test_other_cuts)
|
|
|
|
test_sets = ["test-clean", "test-other"]
|
|
test_dl = [test_clean_dl, test_other_dl]
|
|
|
|
for test_set, test_dl in zip(test_sets, test_dl):
|
|
results_dict = decode_dataset(
|
|
dl=test_dl,
|
|
params=params,
|
|
model=model,
|
|
HLG=HLG,
|
|
H=H,
|
|
bpe_model=bpe_model,
|
|
word_table=lexicon.word_table,
|
|
G=G,
|
|
)
|
|
|
|
save_results(
|
|
params=params,
|
|
test_set_name=test_set,
|
|
results_dict=results_dict,
|
|
)
|
|
|
|
logging.info("Done!")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|