mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
203 lines
5.9 KiB
Python
Executable File
203 lines
5.9 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# Copyright 2024 Xiaomi Corp. (authors: Xiaoyu Yang)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
This script loads a checkpoint and uses it to decode waves.
|
|
You can generate the checkpoint with the following command:
|
|
|
|
Note: This is an example for the AudioSet dataset, if you are using different
|
|
dataset, you should change the argument values according to your dataset.
|
|
|
|
Usage of this script:
|
|
|
|
repo_url=https://huggingface.co/marcoyang/icefall-audio-tagging-audioset-zipformer-2024-03-12
|
|
repo=$(basename $repo_url)
|
|
GIT_LFS_SKIP_SMUDGE=1 git clone $repo_url
|
|
pushd $repo/exp
|
|
git lfs pull --include pretrained.pt
|
|
popd
|
|
|
|
python3 zipformer/pretrained.py \
|
|
--checkpoint $repo/exp/pretrained.pt \
|
|
--label-dict $repo/data/class_labels_indices.csv \
|
|
$repo/test_wavs/1.wav \
|
|
$repo/test_wavs/2.wav \
|
|
$repo/test_wavs/3.wav \
|
|
$repo/test_wavs/4.wav
|
|
"""
|
|
|
|
|
|
import argparse
|
|
import csv
|
|
import logging
|
|
import math
|
|
from typing import List
|
|
|
|
import kaldifeat
|
|
import torch
|
|
import torchaudio
|
|
from torch.nn.utils.rnn import pad_sequence
|
|
from train import add_model_arguments, get_model, get_params
|
|
|
|
|
|
def get_parser():
|
|
parser = argparse.ArgumentParser(
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--checkpoint",
|
|
type=str,
|
|
required=True,
|
|
help="Path to the checkpoint. "
|
|
"The checkpoint is assumed to be saved by "
|
|
"icefall.checkpoint.save_checkpoint().",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--label-dict",
|
|
type=str,
|
|
help="""class_labels_indices.csv.""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"sound_files",
|
|
type=str,
|
|
nargs="+",
|
|
help="The input sound file(s) to transcribe. "
|
|
"Supported formats are those supported by torchaudio.load(). "
|
|
"For example, wav and flac are supported. "
|
|
"The sample rate has to be 16kHz.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--sample-rate",
|
|
type=int,
|
|
default=16000,
|
|
help="The sample rate of the input sound file",
|
|
)
|
|
|
|
add_model_arguments(parser)
|
|
|
|
return parser
|
|
|
|
|
|
def read_sound_files(
|
|
filenames: List[str], expected_sample_rate: float
|
|
) -> List[torch.Tensor]:
|
|
"""Read a list of sound files into a list 1-D float32 torch tensors.
|
|
Args:
|
|
filenames:
|
|
A list of sound filenames.
|
|
expected_sample_rate:
|
|
The expected sample rate of the sound files.
|
|
Returns:
|
|
Return a list of 1-D float32 torch tensors.
|
|
"""
|
|
ans = []
|
|
for f in filenames:
|
|
wave, sample_rate = torchaudio.load(f)
|
|
assert (
|
|
sample_rate == expected_sample_rate
|
|
), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}"
|
|
# We use only the first channel
|
|
ans.append(wave[0].contiguous())
|
|
return ans
|
|
|
|
|
|
@torch.no_grad()
|
|
def main():
|
|
parser = get_parser()
|
|
args = parser.parse_args()
|
|
|
|
params = get_params()
|
|
|
|
params.update(vars(args))
|
|
|
|
logging.info(f"{params}")
|
|
|
|
device = torch.device("cpu")
|
|
if torch.cuda.is_available():
|
|
device = torch.device("cuda", 0)
|
|
|
|
logging.info(f"device: {device}")
|
|
|
|
logging.info("Creating model")
|
|
model = get_model(params)
|
|
|
|
num_param = sum([p.numel() for p in model.parameters()])
|
|
logging.info(f"Number of model parameters: {num_param}")
|
|
|
|
checkpoint = torch.load(args.checkpoint, map_location="cpu", weights_only=False)
|
|
model.load_state_dict(checkpoint["model"], strict=False)
|
|
model.to(device)
|
|
model.eval()
|
|
|
|
# get the label dictionary
|
|
label_dict = {}
|
|
with open(params.label_dict, "r") as f:
|
|
reader = csv.reader(f, delimiter=",")
|
|
for i, row in enumerate(reader):
|
|
if i == 0:
|
|
continue
|
|
label_dict[int(row[0])] = row[2]
|
|
|
|
logging.info("Constructing Fbank computer")
|
|
opts = kaldifeat.FbankOptions()
|
|
opts.device = device
|
|
opts.frame_opts.dither = 0
|
|
opts.frame_opts.snip_edges = False
|
|
opts.frame_opts.samp_freq = params.sample_rate
|
|
opts.mel_opts.num_bins = params.feature_dim
|
|
opts.mel_opts.high_freq = -400
|
|
|
|
fbank = kaldifeat.Fbank(opts)
|
|
|
|
logging.info(f"Reading sound files: {params.sound_files}")
|
|
waves = read_sound_files(
|
|
filenames=params.sound_files, expected_sample_rate=params.sample_rate
|
|
)
|
|
waves = [w.to(device) for w in waves]
|
|
|
|
logging.info("Decoding started")
|
|
features = fbank(waves)
|
|
feature_lengths = [f.size(0) for f in features]
|
|
|
|
features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10))
|
|
feature_lengths = torch.tensor(feature_lengths, device=device)
|
|
|
|
# model forward and predict the audio events
|
|
encoder_out, encoder_out_lens = model.forward_encoder(features, feature_lengths)
|
|
logits = model.forward_audio_tagging(encoder_out, encoder_out_lens)
|
|
|
|
for filename, logit in zip(args.sound_files, logits):
|
|
topk_prob, topk_index = logit.sigmoid().topk(5)
|
|
topk_labels = [label_dict[index.item()] for index in topk_index]
|
|
logging.info(
|
|
f"{filename}: Top 5 predicted labels are {topk_labels} with "
|
|
f"probability of {topk_prob.tolist()}"
|
|
)
|
|
|
|
logging.info("Done")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
|
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
|
|
|
main()
|