mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
573 lines
18 KiB
Python
Executable File
573 lines
18 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# Copyright 2021 Xiaomi Corporation (Author: Liyong Guo,
|
|
# Fangjun Kuang,
|
|
# Wei Kang)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import argparse
|
|
import logging
|
|
from collections import defaultdict
|
|
from pathlib import Path
|
|
from typing import Dict, List, Optional, Tuple
|
|
|
|
import k2
|
|
import torch
|
|
import torch.nn as nn
|
|
from asr_datamodule import AishellAsrDataModule
|
|
from conformer import Conformer
|
|
|
|
from icefall.char_graph_compiler import CharCtcTrainingGraphCompiler
|
|
from icefall.checkpoint import average_checkpoints, load_checkpoint
|
|
from icefall.decode import (
|
|
get_lattice,
|
|
nbest_decoding,
|
|
nbest_oracle,
|
|
one_best_decoding,
|
|
rescore_with_attention_decoder,
|
|
)
|
|
from icefall.env import get_env_info
|
|
from icefall.lexicon import Lexicon
|
|
from icefall.utils import (
|
|
AttributeDict,
|
|
get_texts,
|
|
setup_logger,
|
|
store_transcripts,
|
|
write_error_stats,
|
|
)
|
|
|
|
|
|
def get_parser():
|
|
parser = argparse.ArgumentParser(
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--epoch",
|
|
type=int,
|
|
default=49,
|
|
help="It specifies the checkpoint to use for decoding."
|
|
"Note: Epoch counts from 0.",
|
|
)
|
|
parser.add_argument(
|
|
"--avg",
|
|
type=int,
|
|
default=20,
|
|
help="Number of checkpoints to average. Automatically select "
|
|
"consecutive checkpoints before the checkpoint specified by "
|
|
"'--epoch'. ",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--method",
|
|
type=str,
|
|
default="attention-decoder",
|
|
help="""Decoding method.
|
|
Supported values are:
|
|
- (0) ctc-decoding. Use CTC decoding. It maps the tokens ids to
|
|
tokens using token symbol tabel directly.
|
|
- (1) 1best. Extract the best path from the decoding lattice as the
|
|
decoding result.
|
|
- (2) nbest. Extract n paths from the decoding lattice; the path
|
|
with the highest score is the decoding result.
|
|
- (3) attention-decoder. Extract n paths from the lattice,
|
|
the path with the highest score is the decoding result.
|
|
- (4) nbest-oracle. Its WER is the lower bound of any n-best
|
|
rescoring method can achieve. Useful for debugging n-best
|
|
rescoring method.
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--num-paths",
|
|
type=int,
|
|
default=100,
|
|
help="""Number of paths for n-best based decoding method.
|
|
Used only when "method" is one of the following values:
|
|
nbest, attention-decoder, and nbest-oracle
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--nbest-scale",
|
|
type=float,
|
|
default=0.5,
|
|
help="""The scale to be applied to `lattice.scores`.
|
|
It's needed if you use any kinds of n-best based rescoring.
|
|
Used only when "method" is one of the following values:
|
|
nbest, attention-decoder, and nbest-oracle
|
|
A smaller value results in more unique paths.
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--exp-dir",
|
|
type=str,
|
|
default="conformer_ctc/exp",
|
|
help="The experiment dir",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--lang-dir",
|
|
type=str,
|
|
default="data/lang_char",
|
|
help="The lang dir",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--lm-dir",
|
|
type=str,
|
|
default="data/lm",
|
|
help="""The LM dir.
|
|
It should contain either G_3_gram.pt or G_3_gram.fst.txt
|
|
""",
|
|
)
|
|
|
|
return parser
|
|
|
|
|
|
def get_params() -> AttributeDict:
|
|
params = AttributeDict(
|
|
{
|
|
# parameters for conformer
|
|
"subsampling_factor": 4,
|
|
"feature_dim": 80,
|
|
"nhead": 4,
|
|
"attention_dim": 512,
|
|
"num_encoder_layers": 12,
|
|
"num_decoder_layers": 6,
|
|
"vgg_frontend": False,
|
|
"use_feat_batchnorm": True,
|
|
# parameters for decoder
|
|
"search_beam": 20,
|
|
"output_beam": 7,
|
|
"min_active_states": 30,
|
|
"max_active_states": 10000,
|
|
"use_double_scores": True,
|
|
"env_info": get_env_info(),
|
|
}
|
|
)
|
|
return params
|
|
|
|
|
|
def decode_one_batch(
|
|
params: AttributeDict,
|
|
model: nn.Module,
|
|
HLG: Optional[k2.Fsa],
|
|
H: Optional[k2.Fsa],
|
|
batch: dict,
|
|
lexicon: Lexicon,
|
|
sos_id: int,
|
|
eos_id: int,
|
|
) -> Dict[str, List[List[int]]]:
|
|
"""Decode one batch and return the result in a dict. The dict has the
|
|
following format:
|
|
|
|
- key: It indicates the setting used for decoding. For example,
|
|
if decoding method is 1best, the key is the string `no_rescore`.
|
|
If attention rescoring is used, the key is the string
|
|
`ngram_lm_scale_xxx_attention_scale_xxx`, where `xxx` is the
|
|
value of `lm_scale` and `attention_scale`. An example key is
|
|
`ngram_lm_scale_0.7_attention_scale_0.5`
|
|
- value: It contains the decoding result. `len(value)` equals to
|
|
batch size. `value[i]` is the decoding result for the i-th
|
|
utterance in the given batch.
|
|
Args:
|
|
params:
|
|
It's the return value of :func:`get_params`.
|
|
|
|
- params.method is "1best", it uses 1best decoding without LM rescoring.
|
|
- params.method is "nbest", it uses nbest decoding without LM rescoring.
|
|
- params.method is "attention-decoder", it uses attention rescoring.
|
|
|
|
model:
|
|
The neural model.
|
|
HLG:
|
|
The decoding graph. Used when params.method is NOT ctc-decoding.
|
|
H:
|
|
The ctc topo. Used only when params.method is ctc-decoding.
|
|
batch:
|
|
It is the return value from iterating
|
|
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
|
|
for the format of the `batch`.
|
|
lexicon:
|
|
It contains the token symbol table and the word symbol table.
|
|
sos_id:
|
|
The token ID of the SOS.
|
|
eos_id:
|
|
The token ID of the EOS.
|
|
Returns:
|
|
Return the decoding result. See above description for the format of
|
|
the returned dict.
|
|
"""
|
|
if HLG is not None:
|
|
device = HLG.device
|
|
else:
|
|
device = H.device
|
|
|
|
feature = batch["inputs"]
|
|
assert feature.ndim == 3
|
|
feature = feature.to(device)
|
|
# at entry, feature is (N, T, C)
|
|
|
|
supervisions = batch["supervisions"]
|
|
|
|
nnet_output, memory, memory_key_padding_mask = model(feature, supervisions)
|
|
# nnet_output is (N, T, C)
|
|
|
|
supervision_segments = torch.stack(
|
|
(
|
|
supervisions["sequence_idx"],
|
|
supervisions["start_frame"] // params.subsampling_factor,
|
|
supervisions["num_frames"] // params.subsampling_factor,
|
|
),
|
|
1,
|
|
).to(torch.int32)
|
|
|
|
if H is None:
|
|
assert HLG is not None
|
|
decoding_graph = HLG
|
|
else:
|
|
assert HLG is None
|
|
decoding_graph = H
|
|
|
|
lattice = get_lattice(
|
|
nnet_output=nnet_output,
|
|
decoding_graph=decoding_graph,
|
|
supervision_segments=supervision_segments,
|
|
search_beam=params.search_beam,
|
|
output_beam=params.output_beam,
|
|
min_active_states=params.min_active_states,
|
|
max_active_states=params.max_active_states,
|
|
subsampling_factor=params.subsampling_factor,
|
|
)
|
|
|
|
if params.method == "ctc-decoding":
|
|
best_path = one_best_decoding(
|
|
lattice=lattice, use_double_scores=params.use_double_scores
|
|
)
|
|
# Note: `best_path.aux_labels` contains token IDs, not word IDs
|
|
# since we are using H, not HLG here.
|
|
#
|
|
# token_ids is a lit-of-list of IDs
|
|
token_ids = get_texts(best_path)
|
|
|
|
key = "ctc-decoding"
|
|
hyps = [[lexicon.token_table[i] for i in ids] for ids in token_ids]
|
|
return {key: hyps}
|
|
|
|
if params.method == "nbest-oracle":
|
|
# Note: You can also pass rescored lattices to it.
|
|
# We choose the HLG decoded lattice for speed reasons
|
|
# as HLG decoding is faster and the oracle WER
|
|
# is only slightly worse than that of rescored lattices.
|
|
best_path = nbest_oracle(
|
|
lattice=lattice,
|
|
num_paths=params.num_paths,
|
|
ref_texts=supervisions["text"],
|
|
word_table=lexicon.word_table,
|
|
nbest_scale=params.nbest_scale,
|
|
oov="<UNK>",
|
|
)
|
|
hyps = get_texts(best_path)
|
|
hyps = [[lexicon.word_table[i] for i in ids] for ids in hyps]
|
|
key = f"oracle_{params.num_paths}_nbest_scale_{params.nbest_scale}" # noqa
|
|
return {key: hyps}
|
|
|
|
if params.method in ["1best", "nbest"]:
|
|
if params.method == "1best":
|
|
best_path = one_best_decoding(
|
|
lattice=lattice, use_double_scores=params.use_double_scores
|
|
)
|
|
key = "no_rescore"
|
|
else:
|
|
best_path = nbest_decoding(
|
|
lattice=lattice,
|
|
num_paths=params.num_paths,
|
|
use_double_scores=params.use_double_scores,
|
|
nbest_scale=params.nbest_scale,
|
|
)
|
|
key = f"no_rescore-scale-{params.nbest_scale}-{params.num_paths}" # noqa
|
|
|
|
hyps = get_texts(best_path)
|
|
hyps = [[lexicon.word_table[i] for i in ids] for ids in hyps]
|
|
return {key: hyps}
|
|
|
|
assert params.method == "attention-decoder"
|
|
|
|
best_path_dict = rescore_with_attention_decoder(
|
|
lattice=lattice,
|
|
num_paths=params.num_paths,
|
|
model=model,
|
|
memory=memory,
|
|
memory_key_padding_mask=memory_key_padding_mask,
|
|
sos_id=sos_id,
|
|
eos_id=eos_id,
|
|
nbest_scale=params.nbest_scale,
|
|
)
|
|
ans = dict()
|
|
if best_path_dict is not None:
|
|
for lm_scale_str, best_path in best_path_dict.items():
|
|
hyps = get_texts(best_path)
|
|
hyps = [[lexicon.word_table[i] for i in ids] for ids in hyps]
|
|
ans[lm_scale_str] = hyps
|
|
return ans
|
|
|
|
|
|
def decode_dataset(
|
|
dl: torch.utils.data.DataLoader,
|
|
params: AttributeDict,
|
|
model: nn.Module,
|
|
HLG: Optional[k2.Fsa],
|
|
H: Optional[k2.Fsa],
|
|
lexicon: Lexicon,
|
|
sos_id: int,
|
|
eos_id: int,
|
|
) -> Dict[str, List[Tuple[str, List[str], List[str]]]]:
|
|
"""Decode dataset.
|
|
|
|
Args:
|
|
dl:
|
|
PyTorch's dataloader containing the dataset to decode.
|
|
params:
|
|
It is returned by :func:`get_params`.
|
|
model:
|
|
The neural model.
|
|
HLG:
|
|
The decoding graph. Used when params.method is NOT ctc-decoding.
|
|
H:
|
|
The ctc topo. Used only when params.method is ctc-decoding.
|
|
lexicon:
|
|
It contains the token symbol table and the word symbol table.
|
|
sos_id:
|
|
The token ID for SOS.
|
|
eos_id:
|
|
The token ID for EOS.
|
|
Returns:
|
|
Return a dict, whose key may be "no-rescore" if the decoding method is
|
|
1best or it may be "ngram_lm_scale_0.7_attention_scale_0.5" if attention
|
|
rescoring is used. Its value is a list of tuples. Each tuple contains two
|
|
elements: The first is the reference transcript, and the second is the
|
|
predicted result.
|
|
"""
|
|
results = []
|
|
|
|
num_cuts = 0
|
|
|
|
try:
|
|
num_batches = len(dl)
|
|
except TypeError:
|
|
num_batches = "?"
|
|
|
|
results = defaultdict(list)
|
|
for batch_idx, batch in enumerate(dl):
|
|
texts = batch["supervisions"]["text"]
|
|
cut_ids = [cut.id for cut in batch["supervisions"]["cut"]]
|
|
|
|
hyps_dict = decode_one_batch(
|
|
params=params,
|
|
model=model,
|
|
HLG=HLG,
|
|
H=H,
|
|
batch=batch,
|
|
lexicon=lexicon,
|
|
sos_id=sos_id,
|
|
eos_id=eos_id,
|
|
)
|
|
|
|
for lm_scale, hyps in hyps_dict.items():
|
|
this_batch = []
|
|
assert len(hyps) == len(texts)
|
|
for cut_id, hyp_words, ref_text in zip(cut_ids, hyps, texts):
|
|
ref_words = ref_text.split()
|
|
this_batch.append((cut_id, ref_words, hyp_words))
|
|
|
|
results[lm_scale].extend(this_batch)
|
|
|
|
num_cuts += len(batch["supervisions"]["text"])
|
|
|
|
if batch_idx % 100 == 0:
|
|
batch_str = f"{batch_idx}/{num_batches}"
|
|
|
|
logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
|
|
return results
|
|
|
|
|
|
def save_results(
|
|
params: AttributeDict,
|
|
test_set_name: str,
|
|
results_dict: Dict[str, List[Tuple[str, List[str], List[str]]]],
|
|
):
|
|
if params.method == "attention-decoder":
|
|
# Set it to False since there are too many logs.
|
|
enable_log = False
|
|
else:
|
|
enable_log = True
|
|
test_set_wers = dict()
|
|
for key, results in results_dict.items():
|
|
recog_path = params.exp_dir / f"recogs-{test_set_name}-{key}.txt"
|
|
results = sorted(results)
|
|
store_transcripts(filename=recog_path, texts=results, char_level=True)
|
|
if enable_log:
|
|
logging.info(f"The transcripts are stored in {recog_path}")
|
|
|
|
# The following prints out WERs, per-word error statistics and aligned
|
|
# ref/hyp pairs.
|
|
errs_filename = params.exp_dir / f"errs-{test_set_name}-{key}.txt"
|
|
# we compute CER for aishell dataset.
|
|
results_char = []
|
|
for res in results:
|
|
results_char.append((res[0], list("".join(res[1])), list("".join(res[2]))))
|
|
with open(errs_filename, "w") as f:
|
|
wer = write_error_stats(
|
|
f,
|
|
f"{test_set_name}-{key}",
|
|
results_char,
|
|
enable_log=enable_log,
|
|
compute_CER=True,
|
|
)
|
|
test_set_wers[key] = wer
|
|
|
|
if enable_log:
|
|
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
|
|
|
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
|
errs_info = params.exp_dir / f"cer-summary-{test_set_name}.txt"
|
|
with open(errs_info, "w") as f:
|
|
print("settings\tCER", file=f)
|
|
for key, val in test_set_wers:
|
|
print("{}\t{}".format(key, val), file=f)
|
|
|
|
s = "\nFor {}, CER of different settings are:\n".format(test_set_name)
|
|
note = "\tbest for {}".format(test_set_name)
|
|
for key, val in test_set_wers:
|
|
s += "{}\t{}{}\n".format(key, val, note)
|
|
note = ""
|
|
logging.info(s)
|
|
|
|
|
|
@torch.no_grad()
|
|
def main():
|
|
parser = get_parser()
|
|
AishellAsrDataModule.add_arguments(parser)
|
|
args = parser.parse_args()
|
|
args.exp_dir = Path(args.exp_dir)
|
|
args.lang_dir = Path(args.lang_dir)
|
|
args.lm_dir = Path(args.lm_dir)
|
|
|
|
params = get_params()
|
|
params.update(vars(args))
|
|
|
|
setup_logger(f"{params.exp_dir}/log-{params.method}/log-decode")
|
|
logging.info("Decoding started")
|
|
logging.info(params)
|
|
|
|
lexicon = Lexicon(params.lang_dir)
|
|
max_token_id = max(lexicon.tokens)
|
|
num_classes = max_token_id + 1 # +1 for the blank
|
|
|
|
device = torch.device("cpu")
|
|
if torch.cuda.is_available():
|
|
device = torch.device("cuda", 0)
|
|
|
|
logging.info(f"device: {device}")
|
|
|
|
graph_compiler = CharCtcTrainingGraphCompiler(
|
|
lexicon=lexicon,
|
|
device=device,
|
|
sos_token="<sos/eos>",
|
|
eos_token="<sos/eos>",
|
|
)
|
|
sos_id = graph_compiler.sos_id
|
|
eos_id = graph_compiler.eos_id
|
|
|
|
if params.method == "ctc-decoding":
|
|
HLG = None
|
|
H = k2.ctc_topo(
|
|
max_token=max_token_id,
|
|
modified=False,
|
|
device=device,
|
|
)
|
|
else:
|
|
H = None
|
|
HLG = k2.Fsa.from_dict(
|
|
torch.load(f"{params.lang_dir}/HLG.pt", map_location=device, weights_only=False)
|
|
)
|
|
assert HLG.requires_grad is False
|
|
|
|
if not hasattr(HLG, "lm_scores"):
|
|
HLG.lm_scores = HLG.scores.clone()
|
|
|
|
model = Conformer(
|
|
num_features=params.feature_dim,
|
|
nhead=params.nhead,
|
|
d_model=params.attention_dim,
|
|
num_classes=num_classes,
|
|
subsampling_factor=params.subsampling_factor,
|
|
num_encoder_layers=params.num_encoder_layers,
|
|
num_decoder_layers=params.num_decoder_layers,
|
|
vgg_frontend=params.vgg_frontend,
|
|
use_feat_batchnorm=params.use_feat_batchnorm,
|
|
)
|
|
|
|
if params.avg == 1:
|
|
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
|
else:
|
|
start = params.epoch - params.avg + 1
|
|
filenames = []
|
|
for i in range(start, params.epoch + 1):
|
|
if start >= 0:
|
|
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
|
logging.info(f"averaging {filenames}")
|
|
model.to(device)
|
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
|
|
|
model.to(device)
|
|
model.eval()
|
|
num_param = sum([p.numel() for p in model.parameters()])
|
|
logging.info(f"Number of model parameters: {num_param}")
|
|
|
|
# we need cut ids to display recognition results.
|
|
args.return_cuts = True
|
|
aishell = AishellAsrDataModule(args)
|
|
test_cuts = aishell.test_cuts()
|
|
test_dl = aishell.test_dataloaders(test_cuts)
|
|
|
|
test_sets = ["test"]
|
|
test_dls = [test_dl]
|
|
|
|
for test_set, test_dl in zip(test_sets, test_dls):
|
|
results_dict = decode_dataset(
|
|
dl=test_dl,
|
|
params=params,
|
|
model=model,
|
|
HLG=HLG,
|
|
H=H,
|
|
lexicon=lexicon,
|
|
sos_id=sos_id,
|
|
eos_id=eos_id,
|
|
)
|
|
|
|
save_results(params=params, test_set_name=test_set, results_dict=results_dict)
|
|
|
|
logging.info("Done!")
|
|
|
|
|
|
torch.set_num_threads(1)
|
|
torch.set_num_interop_threads(1)
|
|
|
|
if __name__ == "__main__":
|
|
main()
|