mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 10:02:22 +00:00
269 lines
7.2 KiB
Python
Executable File
269 lines
7.2 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
This script loads ONNX models and uses them to decode waves.
|
|
You can use the following command to get the exported models:
|
|
|
|
We use the pre-trained model from
|
|
https://huggingface.co/Zengwei/icefall-asr-librispeech-zipformer-2023-05-15
|
|
as an example to show how to use this file.
|
|
|
|
1. Download the pre-trained model
|
|
|
|
cd egs/librispeech/ASR
|
|
|
|
repo_url=https://huggingface.co/Zengwei/icefall-asr-librispeech-zipformer-2023-05-15
|
|
GIT_LFS_SKIP_SMUDGE=1 git clone $repo_url
|
|
repo=$(basename $repo_url)
|
|
|
|
pushd $repo
|
|
git lfs pull --include "exp/pretrained.pt"
|
|
|
|
cd exp
|
|
ln -s pretrained.pt epoch-99.pt
|
|
popd
|
|
|
|
2. Export the model to ONNX
|
|
|
|
./zipformer/export-onnx.py \
|
|
--tokens $repo/data/lang_bpe_500/tokens.txt \
|
|
--use-averaged-model 0 \
|
|
--epoch 99 \
|
|
--avg 1 \
|
|
--exp-dir $repo/exp \
|
|
--causal False
|
|
|
|
It will generate the following 3 files inside $repo/exp:
|
|
|
|
- encoder-epoch-99-avg-1.onnx
|
|
- decoder-epoch-99-avg-1.onnx
|
|
- joiner-epoch-99-avg-1.onnx
|
|
|
|
3. Run this file
|
|
|
|
./zipformer/onnx_pretrained.py \
|
|
--encoder-model-filename $repo/exp/encoder-epoch-99-avg-1.onnx \
|
|
--decoder-model-filename $repo/exp/decoder-epoch-99-avg-1.onnx \
|
|
--joiner-model-filename $repo/exp/joiner-epoch-99-avg-1.onnx \
|
|
--tokens $repo/data/lang_bpe_500/tokens.txt \
|
|
$repo/test_wavs/1089-134686-0001.wav \
|
|
$repo/test_wavs/1221-135766-0001.wav \
|
|
$repo/test_wavs/1221-135766-0002.wav
|
|
"""
|
|
|
|
import argparse
|
|
import logging
|
|
import math
|
|
from pathlib import Path
|
|
from typing import List, Tuple
|
|
|
|
import onnxruntime as ort
|
|
import torch
|
|
import torchaudio
|
|
from torch.nn.utils.rnn import pad_sequence
|
|
from lhotse import Fbank, FbankConfig
|
|
from icefall.utils import str2bool
|
|
|
|
|
|
def get_parser():
|
|
parser = argparse.ArgumentParser(
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--model-filename",
|
|
type=str,
|
|
required=True,
|
|
help="Path to the encoder onnx model. ",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--sampling-rate",
|
|
type=int,
|
|
default=24000,
|
|
help="The sampleing rate of libritts dataset",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--frame-shift",
|
|
type=int,
|
|
default=256,
|
|
help="Frame shift.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--frame-length",
|
|
type=int,
|
|
default=1024,
|
|
help="Frame shift.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--use-fft-mag",
|
|
type=str2bool,
|
|
default=True,
|
|
help="Whether to use magnitude of fbank, false to use power energy.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--output-dir",
|
|
type=str,
|
|
default="generated_audios",
|
|
help="The generated will be written to.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"sound_files",
|
|
type=str,
|
|
nargs="+",
|
|
help="The input sound file(s) to transcribe. "
|
|
"Supported formats are those supported by torchaudio.load(). "
|
|
"For example, wav and flac are supported. "
|
|
"The sample rate has to be 16kHz.",
|
|
)
|
|
|
|
return parser
|
|
|
|
|
|
class OnnxModel:
|
|
def __init__(
|
|
self,
|
|
model_filename: str,
|
|
):
|
|
session_opts = ort.SessionOptions()
|
|
session_opts.inter_op_num_threads = 1
|
|
session_opts.intra_op_num_threads = 4
|
|
|
|
self.session_opts = session_opts
|
|
|
|
self.init_model(model_filename)
|
|
|
|
def init_model(self, model_filename: str):
|
|
self.model = ort.InferenceSession(
|
|
model_filename,
|
|
sess_options=self.session_opts,
|
|
providers=["CPUExecutionProvider"],
|
|
)
|
|
|
|
def run_model(
|
|
self,
|
|
x: torch.Tensor,
|
|
) -> torch.Tensor:
|
|
"""
|
|
Args:
|
|
x:
|
|
A 3-D tensor of shape (N, T, C)
|
|
x_lens:
|
|
A 2-D tensor of shape (N,). Its dtype is torch.int64
|
|
Returns:
|
|
Return a tuple containing:
|
|
- encoder_out, its shape is (N, T', joiner_dim)
|
|
- encoder_out_lens, its shape is (N,)
|
|
"""
|
|
out = self.model.run(
|
|
[
|
|
self.model.get_outputs()[0].name,
|
|
],
|
|
{
|
|
self.model.get_inputs()[0].name: x.numpy(),
|
|
},
|
|
)
|
|
return torch.from_numpy(out[0])
|
|
|
|
|
|
def read_sound_files(
|
|
filenames: List[str], expected_sample_rate: float
|
|
) -> List[torch.Tensor]:
|
|
"""Read a list of sound files into a list 1-D float32 torch tensors.
|
|
Args:
|
|
filenames:
|
|
A list of sound filenames.
|
|
expected_sample_rate:
|
|
The expected sample rate of the sound files.
|
|
Returns:
|
|
Return a list of 1-D float32 torch tensors.
|
|
"""
|
|
ans = []
|
|
for f in filenames:
|
|
wave, sample_rate = torchaudio.load(f)
|
|
assert (
|
|
sample_rate == expected_sample_rate
|
|
), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}"
|
|
# We use only the first channel
|
|
ans.append(wave[0])
|
|
return ans
|
|
|
|
|
|
@torch.no_grad()
|
|
def main():
|
|
parser = get_parser()
|
|
args = parser.parse_args()
|
|
|
|
output_dir = Path(args.model_filename).parent / args.output_dir
|
|
output_dir.mkdir(exist_ok=True)
|
|
args.output_dir = output_dir
|
|
logging.info(vars(args))
|
|
|
|
model = OnnxModel(model_filename=args.model_filename)
|
|
|
|
config = FbankConfig(
|
|
sampling_rate=args.sampling_rate,
|
|
frame_length=args.frame_length / args.sampling_rate, # (in second),
|
|
frame_shift=args.frame_shift / args.sampling_rate, # (in second)
|
|
use_fft_mag=args.use_fft_mag,
|
|
)
|
|
fbank = Fbank(config)
|
|
|
|
logging.info(f"Reading sound files: {args.sound_files}")
|
|
|
|
waves = read_sound_files(
|
|
filenames=args.sound_files, expected_sample_rate=args.sampling_rate
|
|
)
|
|
wave_lengths = [w.size(0) for w in waves]
|
|
waves = pad_sequence(waves, batch_first=True, padding_value=0)
|
|
|
|
logging.info(f"waves : {waves.shape}")
|
|
|
|
features = fbank.extract_batch(waves, sampling_rate=args.sampling_rate)
|
|
|
|
if features.dim() == 2:
|
|
features = features.unsqueeze(0)
|
|
|
|
features = features.permute(0, 2, 1)
|
|
|
|
logging.info(f"features : {features.shape}")
|
|
|
|
logging.info("Generating started")
|
|
|
|
# model forward
|
|
audios = model.run_model(features)
|
|
|
|
for i, filename in enumerate(args.sound_files):
|
|
audio = audios[i : i + 1, 0 : wave_lengths[i]]
|
|
ofilename = args.output_dir / filename.split("/")[-1]
|
|
logging.info(f"Writting audio : {ofilename}")
|
|
torchaudio.save(str(ofilename), audio.cpu(), args.sampling_rate)
|
|
|
|
logging.info("Generating Done")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
|
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
|
main()
|