icefall/egs/ljspeech/TTS/vits/tokenizer.py
Zengwei Yao d89f4ea149
Use piper_phonemize as text tokenizer in ljspeech recipe (#1511)
* use piper_phonemize as text tokenizer in ljspeech recipe

* modify usage of tokenizer in vits/train.py

* update docs
2024-02-29 10:13:22 +08:00

147 lines
4.7 KiB
Python

# Copyright 2023-2024 Xiaomi Corp. (authors: Zengwei Yao)
#
# See ../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
from typing import Dict, List
import tacotron_cleaner.cleaners
from piper_phonemize import phonemize_espeak
from utils import intersperse
class Tokenizer(object):
def __init__(self, tokens: str):
"""
Args:
tokens: the file that maps tokens to ids
"""
# Parse token file
self.token2id: Dict[str, int] = {}
with open(tokens, "r", encoding="utf-8") as f:
for line in f.readlines():
info = line.rstrip().split()
if len(info) == 1:
# case of space
token = " "
id = int(info[0])
else:
token, id = info[0], int(info[1])
assert token not in self.token2id, token
self.token2id[token] = id
# Refer to https://github.com/rhasspy/piper/blob/master/TRAINING.md
self.pad_id = self.token2id["_"] # padding
self.sos_id = self.token2id["^"] # beginning of an utterance (bos)
self.eos_id = self.token2id["$"] # end of an utterance (eos)
self.space_id = self.token2id[" "] # word separator (whitespace)
self.vocab_size = len(self.token2id)
def texts_to_token_ids(
self,
texts: List[str],
intersperse_blank: bool = True,
add_sos: bool = False,
add_eos: bool = False,
lang: str = "en-us",
) -> List[List[int]]:
"""
Args:
texts:
A list of transcripts.
intersperse_blank:
Whether to intersperse blanks in the token sequence.
add_sos:
Whether to add sos token at the start.
add_eos:
Whether to add eos token at the end.
lang:
Language argument passed to phonemize_espeak().
Returns:
Return a list of token id list [utterance][token_id]
"""
token_ids_list = []
for text in texts:
# Text normalization
text = tacotron_cleaner.cleaners.custom_english_cleaners(text)
# Convert to phonemes
tokens_list = phonemize_espeak(text, lang)
tokens = []
for t in tokens_list:
tokens.extend(t)
token_ids = []
for t in tokens:
if t not in self.token2id:
logging.warning(f"Skip OOV {t}")
continue
token_ids.append(self.token2id[t])
if intersperse_blank:
token_ids = intersperse(token_ids, self.pad_id)
if add_sos:
token_ids = [self.sos_id] + token_ids
if add_eos:
token_ids = token_ids + [self.eos_id]
token_ids_list.append(token_ids)
return token_ids_list
def tokens_to_token_ids(
self,
tokens_list: List[str],
intersperse_blank: bool = True,
add_sos: bool = False,
add_eos: bool = False,
) -> List[List[int]]:
"""
Args:
tokens_list:
A list of token list, each corresponding to one utterance.
intersperse_blank:
Whether to intersperse blanks in the token sequence.
add_sos:
Whether to add sos token at the start.
add_eos:
Whether to add eos token at the end.
Returns:
Return a list of token id list [utterance][token_id]
"""
token_ids_list = []
for tokens in tokens_list:
token_ids = []
for t in tokens:
if t not in self.token2id:
logging.warning(f"Skip OOV {t}")
continue
token_ids.append(self.token2id[t])
if intersperse_blank:
token_ids = intersperse(token_ids, self.pad_id)
if add_sos:
token_ids = [self.sos_id] + token_ids
if add_eos:
token_ids = token_ids + [self.eos_id]
token_ids_list.append(token_ids)
return token_ids_list