mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
* use piper_phonemize as text tokenizer in ljspeech recipe * modify usage of tokenizer in vits/train.py * update docs
271 lines
7.1 KiB
Python
Executable File
271 lines
7.1 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
#
|
|
# Copyright 2023 Xiaomi Corporation (Author: Zengwei Yao)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
"""
|
|
This script exports a VITS model from PyTorch to ONNX.
|
|
|
|
Export the model to ONNX:
|
|
./vits/export-onnx.py \
|
|
--epoch 1000 \
|
|
--exp-dir vits/exp \
|
|
--tokens data/tokens.txt
|
|
|
|
It will generate two files inside vits/exp:
|
|
- vits-epoch-1000.onnx
|
|
- vits-epoch-1000.int8.onnx (quantizated model)
|
|
|
|
See ./test_onnx.py for how to use the exported ONNX models.
|
|
"""
|
|
|
|
import argparse
|
|
import logging
|
|
from pathlib import Path
|
|
from typing import Dict, Tuple
|
|
|
|
import onnx
|
|
import torch
|
|
import torch.nn as nn
|
|
from onnxruntime.quantization import QuantType, quantize_dynamic
|
|
from tokenizer import Tokenizer
|
|
from train import get_model, get_params
|
|
|
|
from icefall.checkpoint import load_checkpoint
|
|
|
|
|
|
def get_parser():
|
|
parser = argparse.ArgumentParser(
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--epoch",
|
|
type=int,
|
|
default=1000,
|
|
help="""It specifies the checkpoint to use for decoding.
|
|
Note: Epoch counts from 1.
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--exp-dir",
|
|
type=str,
|
|
default="vits/exp",
|
|
help="The experiment dir",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--tokens",
|
|
type=str,
|
|
default="data/tokens.txt",
|
|
help="""Path to vocabulary.""",
|
|
)
|
|
|
|
return parser
|
|
|
|
|
|
def add_meta_data(filename: str, meta_data: Dict[str, str]):
|
|
"""Add meta data to an ONNX model. It is changed in-place.
|
|
|
|
Args:
|
|
filename:
|
|
Filename of the ONNX model to be changed.
|
|
meta_data:
|
|
Key-value pairs.
|
|
"""
|
|
model = onnx.load(filename)
|
|
for key, value in meta_data.items():
|
|
meta = model.metadata_props.add()
|
|
meta.key = key
|
|
meta.value = value
|
|
|
|
onnx.save(model, filename)
|
|
|
|
|
|
class OnnxModel(nn.Module):
|
|
"""A wrapper for VITS generator."""
|
|
|
|
def __init__(self, model: nn.Module):
|
|
"""
|
|
Args:
|
|
model:
|
|
A VITS generator.
|
|
frame_shift:
|
|
The frame shift in samples.
|
|
"""
|
|
super().__init__()
|
|
self.model = model
|
|
|
|
def forward(
|
|
self,
|
|
tokens: torch.Tensor,
|
|
tokens_lens: torch.Tensor,
|
|
noise_scale: float = 0.667,
|
|
alpha: float = 1.0,
|
|
noise_scale_dur: float = 0.8,
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
"""Please see the help information of VITS.inference_batch
|
|
|
|
Args:
|
|
tokens:
|
|
Input text token indexes (1, T_text)
|
|
tokens_lens:
|
|
Number of tokens of shape (1,)
|
|
noise_scale (float):
|
|
Noise scale parameter for flow.
|
|
noise_scale_dur (float):
|
|
Noise scale parameter for duration predictor.
|
|
alpha (float):
|
|
Alpha parameter to control the speed of generated speech.
|
|
|
|
Returns:
|
|
Return a tuple containing:
|
|
- audio, generated wavform tensor, (B, T_wav)
|
|
"""
|
|
audio, _, _ = self.model.inference(
|
|
text=tokens,
|
|
text_lengths=tokens_lens,
|
|
noise_scale=noise_scale,
|
|
noise_scale_dur=noise_scale_dur,
|
|
alpha=alpha,
|
|
)
|
|
return audio
|
|
|
|
|
|
def export_model_onnx(
|
|
model: nn.Module,
|
|
model_filename: str,
|
|
vocab_size: int,
|
|
opset_version: int = 11,
|
|
) -> None:
|
|
"""Export the given generator model to ONNX format.
|
|
The exported model has one input:
|
|
|
|
- tokens, a tensor of shape (1, T_text); dtype is torch.int64
|
|
|
|
and it has one output:
|
|
|
|
- audio, a tensor of shape (1, T'); dtype is torch.float32
|
|
|
|
Args:
|
|
model:
|
|
The VITS generator.
|
|
model_filename:
|
|
The filename to save the exported ONNX model.
|
|
vocab_size:
|
|
Number of tokens used in training.
|
|
opset_version:
|
|
The opset version to use.
|
|
"""
|
|
tokens = torch.randint(low=0, high=vocab_size, size=(1, 13), dtype=torch.int64)
|
|
tokens_lens = torch.tensor([tokens.shape[1]], dtype=torch.int64)
|
|
noise_scale = torch.tensor([1], dtype=torch.float32)
|
|
noise_scale_dur = torch.tensor([1], dtype=torch.float32)
|
|
alpha = torch.tensor([1], dtype=torch.float32)
|
|
|
|
torch.onnx.export(
|
|
model,
|
|
(tokens, tokens_lens, noise_scale, alpha, noise_scale_dur),
|
|
model_filename,
|
|
verbose=False,
|
|
opset_version=opset_version,
|
|
input_names=[
|
|
"tokens",
|
|
"tokens_lens",
|
|
"noise_scale",
|
|
"alpha",
|
|
"noise_scale_dur",
|
|
],
|
|
output_names=["audio"],
|
|
dynamic_axes={
|
|
"tokens": {0: "N", 1: "T"},
|
|
"tokens_lens": {0: "N"},
|
|
"audio": {0: "N", 1: "T"},
|
|
},
|
|
)
|
|
|
|
meta_data = {
|
|
"model_type": "VITS",
|
|
"version": "1",
|
|
"model_author": "k2-fsa",
|
|
"comment": "VITS generator",
|
|
}
|
|
logging.info(f"meta_data: {meta_data}")
|
|
|
|
add_meta_data(filename=model_filename, meta_data=meta_data)
|
|
|
|
|
|
@torch.no_grad()
|
|
def main():
|
|
args = get_parser().parse_args()
|
|
args.exp_dir = Path(args.exp_dir)
|
|
|
|
params = get_params()
|
|
params.update(vars(args))
|
|
|
|
tokenizer = Tokenizer(params.tokens)
|
|
params.blank_id = tokenizer.pad_id
|
|
params.vocab_size = tokenizer.vocab_size
|
|
|
|
logging.info(params)
|
|
|
|
logging.info("About to create model")
|
|
model = get_model(params)
|
|
|
|
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
|
|
|
model = model.generator
|
|
model.to("cpu")
|
|
model.eval()
|
|
|
|
model = OnnxModel(model=model)
|
|
|
|
num_param = sum([p.numel() for p in model.parameters()])
|
|
logging.info(f"generator parameters: {num_param}")
|
|
|
|
suffix = f"epoch-{params.epoch}"
|
|
|
|
opset_version = 13
|
|
|
|
logging.info("Exporting encoder")
|
|
model_filename = params.exp_dir / f"vits-{suffix}.onnx"
|
|
export_model_onnx(
|
|
model,
|
|
model_filename,
|
|
params.vocab_size,
|
|
opset_version=opset_version,
|
|
)
|
|
logging.info(f"Exported generator to {model_filename}")
|
|
|
|
# Generate int8 quantization models
|
|
# See https://onnxruntime.ai/docs/performance/model-optimizations/quantization.html#data-type-selection
|
|
|
|
logging.info("Generate int8 quantization models")
|
|
|
|
model_filename_int8 = params.exp_dir / f"vits-{suffix}.int8.onnx"
|
|
quantize_dynamic(
|
|
model_input=model_filename,
|
|
model_output=model_filename_int8,
|
|
weight_type=QuantType.QUInt8,
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
|
main()
|