icefall/egs/ljspeech/TTS/local/prepare_tokens_ljspeech.py
Zengwei Yao d89f4ea149
Use piper_phonemize as text tokenizer in ljspeech recipe (#1511)
* use piper_phonemize as text tokenizer in ljspeech recipe

* modify usage of tokenizer in vits/train.py

* update docs
2024-02-29 10:13:22 +08:00

63 lines
2.0 KiB
Python
Executable File

#!/usr/bin/env python3
# Copyright 2023 Xiaomi Corp. (authors: Zengwei Yao)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This file reads the texts in given manifest and save the new cuts with phoneme tokens.
"""
import logging
from pathlib import Path
import tacotron_cleaner.cleaners
from lhotse import CutSet, load_manifest
from piper_phonemize import phonemize_espeak
def prepare_tokens_ljspeech():
output_dir = Path("data/spectrogram")
prefix = "ljspeech"
suffix = "jsonl.gz"
partition = "all"
cut_set = load_manifest(output_dir / f"{prefix}_cuts_{partition}.{suffix}")
new_cuts = []
for cut in cut_set:
# Each cut only contains one supervision
assert len(cut.supervisions) == 1, (len(cut.supervisions), cut)
text = cut.supervisions[0].normalized_text
# Text normalization
text = tacotron_cleaner.cleaners.custom_english_cleaners(text)
# Convert to phonemes
tokens_list = phonemize_espeak(text, "en-us")
tokens = []
for t in tokens_list:
tokens.extend(t)
cut.tokens = tokens
new_cuts.append(cut)
new_cut_set = CutSet.from_cuts(new_cuts)
new_cut_set.to_file(output_dir / f"{prefix}_cuts_with_tokens_{partition}.{suffix}")
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
prepare_tokens_ljspeech()