2022-10-10 00:26:31 +08:00

579 lines
21 KiB
Python

# Copyright 2022 Xiaomi Corp. (authors: Daniel Povey)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import collections
from itertools import repeat
from typing import Optional, Tuple, Union
from functools import reduce
import logging
import random
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor
from torch.nn import Embedding as ScaledEmbedding
def _ntuple(n):
def parse(x):
if isinstance(x, collections.Iterable):
return x
return tuple(repeat(x, n))
return parse
_single = _ntuple(1)
_pair = _ntuple(2)
class ActivationBalancerFunction(torch.autograd.Function):
@staticmethod
def forward(
ctx,
x: Tensor,
channel_dim: int,
min_positive: float, # e.g. 0.05
max_positive: float, # e.g. 0.95
max_factor: float, # e.g. 0.01
min_abs: float, # e.g. 0.2
max_abs: float, # e.g. 100.0
) -> Tensor:
if x.requires_grad:
if channel_dim < 0:
channel_dim += x.ndim
sum_dims = [d for d in range(x.ndim) if d != channel_dim]
x_normalized = x - torch.mean(x, dim=sum_dims, keepdim=True)
xgtmean = (x_normalized > 0)
proportion_positive = torch.mean(
(x > 0).to(x.dtype), dim=sum_dims, keepdim=True
)
factor1 = (
(min_positive - proportion_positive).relu()
* (max_factor / min_positive)
if min_positive != 0.0
else 0.0
)
factor2 = (
(proportion_positive - max_positive).relu()
* (max_factor / (max_positive - 1.0))
if max_positive != 1.0
else 0.0
)
# `factor` is a tensor of shape something like (1, 1, num_channels,
# 1), containing elements between -1 and 1 that are zero if the
# proportion of positive features is between min_positive and
# max_positive, max_factor if proportion==0.0 (all features are negative),
# and -max_factor if proportion==1.0 (all features are positive). It is
# an amount per channel by which we'll modify the gradient; the sign
# of modifying the gradient will depend on the sign of the gradient.
factor = factor1 + factor2
if isinstance(factor, float):
factor = torch.zeros_like(proportion_positive)
mean_abs = torch.mean(x_normalized.abs(), dim=sum_dims, keepdim=True)
below_threshold = mean_abs < min_abs
above_threshold = mean_abs > max_abs
ctx.save_for_backward(
factor, xgtmean, below_threshold, above_threshold
)
ctx.max_factor = max_factor
ctx.sum_dims = sum_dims
return x
@staticmethod
def backward(
ctx, x_grad: Tensor
) -> Tuple[Tensor, None, None, None, None, None, None]:
factor, xgtmean, below_threshold, above_threshold = ctx.saved_tensors
dtype = x_grad.dtype
scale_factor = (
(below_threshold.to(dtype) - above_threshold.to(dtype))
* (xgtmean.to(dtype) - 0.5)
* (ctx.max_factor * 2.0)
)
neg_delta_grad = x_grad.abs() * (factor + scale_factor)
return x_grad - neg_delta_grad, None, None, None, None, None, None
def find_direction_coeffs(x: Tensor,
prev_direction: Tensor) -> Tuple[Tensor, Tensor, Tensor]:
"""
Figure out (an approximation to) the proportion of the variance of a set of
feature vectors that can be attributed to the top eigen-direction.
Args:
x: a Tensor of shape (num_frames, num_channels), with num_frames > 1.
prev_direction: a Tensor of shape (num_channels,), that is our previous estimate
of the top eigen-direction, or a random direction if this is the first
iteration. Does not have to be normalized, but should be nonzero.
Returns: (cur_direction, coeffs), where:
cur_direction: a Tensor of shape (num_channels,) that is the current
estimate of the top eigen-direction.
coeffs: a Tensor of shape (num_frames, 1) that minimizes, or
approximately minimizes, (x - coeffs * cur_direction).norm()
"""
(num_frames, num_channels) = x.shape
assert num_channels > 1 and num_frames > 1
assert prev_direction.shape == (num_channels,)
# `coeffs` are the coefficients of `prev_direction` in x.
# actually represent the coeffs up to a constant positive factor.
coeffs = (x * prev_direction).sum(dim=1, keepdim=True) + 1.0e-10
cur_direction = (x * coeffs).sum(dim=0) / ((coeffs ** 2).sum() + 1.0e-20)
return cur_direction, coeffs
class MaxEigLimiterFunction(torch.autograd.Function):
@staticmethod
def forward(
ctx,
x: Tensor,
direction: Tensor,
channel_dim: int,
subtract_mean: bool,
max_variance_proportion: float,
grad_scale: float) -> Tuple[Tensor, Tensor]:
eps = 1.0e-20
num_channels = x.shape[channel_dim]
assert max_variance_proportion > 1.0 / num_channels
orig_x = x
x = x.transpose(channel_dim, -1).reshape(-1, num_channels)
if subtract_mean:
x = x - x.mean(dim=0)
new_direction, coeffs = find_direction_coeffs(x, direction)
x_var = (x**2).mean()
x_residual = x - coeffs * new_direction
x_residual_var = (x_residual**2).mean()
# `variance_proportion` is the proportion of the variance accounted for
# by the top eigen-direction.
variance_proportion = (x_var - x_residual_var) / (x_var + 1.0e-20)
ans_direction = direction + new_direction # ensure nonzero even if x == 0
ans_direction = ans_direction / ans_direction.norm()
if random.random() < 0.0005:
logging.info(f"variance_proportion = {variance_proportion.item()}, shape={tuple(x.shape)}")
# Caution: this causes a CUDA sync, which is not ideal.
if variance_proportion >= max_variance_proportion:
ctx.channel_dim = channel_dim
ctx.subtract_mean = subtract_mean
ctx.grad_scale = grad_scale
ctx.save_for_backward(orig_x.detach(),
coeffs.detach(),
new_direction.detach())
return orig_x, ans_direction
@staticmethod
def backward(ctx, x_grad, *args):
# the *args is all the other derivs, which should be None or zero.
if not hasattr(ctx, 'channel_dim'):
# the top eig's proportion of the variance was below the threshold.
return x_grad, None, None, None, None, None, None
with torch.enable_grad():
(x_orig, coeffs, new_direction) = ctx.saved_tensors
x_orig.requires_grad = True
num_channels = x_orig.shape[ctx.channel_dim]
x = x_orig.transpose(ctx.channel_dim, -1).reshape(-1, num_channels)
new_direction.requires_grad = False
if ctx.subtract_mean:
x = x - x.mean(dim=0)
x_var = (x ** 2).mean()
x_residual = x - coeffs * new_direction
x_residual_var = (x_residual ** 2).mean()
# `variance_proportion` is the proportion of the variance accounted for
# by the top eigen-direction. This is to be minimized.
variance_proportion = (x_var - x_residual_var) / (x_var + 1.0e-20)
variance_proportion.backward()
x_orig_grad = x_orig.grad
x_extra_grad = x_orig.grad * ctx.grad_scale * x_grad.norm() / (x_orig_grad.norm() + 1.0e-20)
return x_grad + x_extra_grad.detach(), None, None, None, None, None, None
class BasicNorm(torch.nn.Module):
"""
This is intended to be a simpler, and hopefully cheaper, replacement for
LayerNorm. The observation this is based on, is that Transformer-type
networks, especially with pre-norm, sometimes seem to set one of the
feature dimensions to a large constant value (e.g. 50), which "defeats"
the LayerNorm because the output magnitude is then not strongly dependent
on the other (useful) features. Presumably the weight and bias of the
LayerNorm are required to allow it to do this.
So the idea is to introduce this large constant value as an explicit
parameter, that takes the role of the "eps" in LayerNorm, so the network
doesn't have to do this trick. We make the "eps" learnable.
Args:
num_channels: the number of channels, e.g. 512.
channel_dim: the axis/dimension corresponding to the channel,
interprted as an offset from the input's ndim if negative.
shis is NOT the num_channels; it should typically be one of
{-2, -1, 0, 1, 2, 3}.
eps: the initial "epsilon" that we add as ballast in:
scale = ((input_vec**2).mean() + epsilon)**-0.5
Note: our epsilon is actually large, but we keep the name
to indicate the connection with conventional LayerNorm.
learn_eps: if true, we learn epsilon; if false, we keep it
at the initial value.
"""
def __init__(
self,
num_channels: int,
channel_dim: int = -1, # CAUTION: see documentation.
eps: float = 0.25,
learn_eps: bool = True,
) -> None:
super(BasicNorm, self).__init__()
self.num_channels = num_channels
self.channel_dim = channel_dim
if learn_eps:
self.eps = nn.Parameter(torch.tensor(eps).log().detach())
else:
self.register_buffer("eps", torch.tensor(eps).log().detach())
def forward(self, x: Tensor) -> Tensor:
assert x.shape[self.channel_dim] == self.num_channels
scales = (
torch.mean(x ** 2, dim=self.channel_dim, keepdim=True)
+ self.eps.exp()
) ** -0.5
return x * scales
def ScaledLinear(*args,
initial_scale: float = 1.0,
**kwargs ) -> nn.Linear:
"""
Behaves like a constructor of a modified version of nn.Linear
that gives an easy way to set the default initial parameter scale.
Args:
Accepts the standard args and kwargs that nn.Linear accepts
e.g. in_features, out_features, bias=False.
initial_scale: you can override this if you want to increase
or decrease the initial magnitude of the module's output
(affects the initialization of weight_scale and bias_scale).
Another option, if you want to do something like this, is
to re-initialize the parameters.
"""
ans = nn.Linear(*args, **kwargs)
with torch.no_grad():
ans.weight[:] *= initial_scale
if ans.bias is not None:
torch.nn.init.uniform_(ans.bias,
-0.1 * initial_scale,
0.1 * initial_scale)
return ans
def ScaledConv1d(*args,
initial_scale: float = 1.0,
**kwargs ) -> nn.Linear:
"""
Behaves like a constructor of a modified version of nn.Conv1d
that gives an easy way to set the default initial parameter scale.
Args:
Accepts the standard args and kwargs that nn.Linear accepts
e.g. in_features, out_features, bias=False.
initial_scale: you can override this if you want to increase
or decrease the initial magnitude of the module's output
(affects the initialization of weight_scale and bias_scale).
Another option, if you want to do something like this, is
to re-initialize the parameters.
"""
ans = nn.Conv1d(*args, **kwargs)
with torch.no_grad():
ans.weight[:] *= initial_scale
if ans.bias is not None:
torch.nn.init.uniform_(ans.bias,
-0.1 * initial_scale,
0.1 * initial_scale)
return ans
class ActivationBalancer(torch.nn.Module):
"""
Modifies the backpropped derivatives of a function to try to encourage, for
each channel, that it is positive at least a proportion `threshold` of the
time. It does this by multiplying negative derivative values by up to
(1+max_factor), and positive derivative values by up to (1-max_factor),
interpolated from 1 at the threshold to those extremal values when none
of the inputs are positive.
Args:
num_channels: the number of channels
channel_dim: the dimension/axis corresponding to the channel, e.g.
-1, 0, 1, 2; will be interpreted as an offset from x.ndim if negative.
min_positive: the minimum, per channel, of the proportion of the time
that (x > 0), below which we start to modify the derivatives.
max_positive: the maximum, per channel, of the proportion of the time
that (x > 0), above which we start to modify the derivatives.
max_factor: the maximum factor by which we modify the derivatives for
either the sign constraint or the magnitude constraint;
e.g. with max_factor=0.02, the the derivatives would be multiplied by
values in the range [0.98..1.02].
min_abs: the minimum average-absolute-value difference from the mean
value per channel, which we allow, before we start to modify
the derivatives to prevent this.
max_abs: the maximum average-absolute-value difference from the mean
value per channel, which we allow, before we start to modify
the derivatives to prevent this.
max_var_per_eig: the maximum proportion of the variance of the
features/channels, after mean subtraction, that can come from
any given eigenvalue.
"""
def __init__(
self,
num_channels: int,
channel_dim: int,
min_positive: float = 0.05,
max_positive: float = 0.95,
max_factor: float = 0.01,
min_abs: float = 0.2,
max_abs: float = 100.0,
max_var_per_eig: float = 0.0,
):
super(ActivationBalancer, self).__init__()
self.num_channels = num_channels
self.channel_dim = channel_dim
self.min_positive = min_positive
self.max_positive = max_positive
self.max_factor = max_factor
self.min_abs = min_abs
self.max_abs = max_abs
assert max_var_per_eig == 0.0 or max_var_per_eig > 1.0 / num_channels
self.max_var_per_eig = max_var_per_eig
if max_var_per_eig > 0.0:
with torch.no_grad():
# arbitrary.. would use randn() but want to leave the rest of the model's
# random parameters unchanged for comparison
direction = torch.arange(num_channels).to(torch.float)
direction = direction / direction.norm()
self.register_buffer('max_eig_direction', direction)
else:
self.max_eig_direction = None
def forward(self, x: Tensor) -> Tensor:
if torch.jit.is_scripting():
return x
max_eig_prob = 0.25
if self.max_var_per_eig > 0 and random.random() < max_eig_prob:
with torch.cuda.amp.autocast(enabled=False):
x, new_direction = MaxEigLimiterFunction.apply(
x, self.max_eig_direction,
self.channel_dim,
True, # subtract_mean
self.max_var_per_eig,
self.max_factor / max_eig_prob,
)
self.max_eig_direction[:] = new_direction.detach()
balance_prob = 0.25
if random.random() < balance_prob:
return ActivationBalancerFunction.apply(
x,
self.channel_dim,
self.min_positive,
self.max_positive,
self.max_factor / balance_prob,
self.min_abs,
self.max_abs,
)
else:
return x
class DoubleSwishFunction(torch.autograd.Function):
"""
double_swish(x) = x * torch.sigmoid(x-1)
This is a definition, originally motivated by its close numerical
similarity to swish(swish(x)), where swish(x) = x * sigmoid(x).
Memory-efficient derivative computation:
double_swish(x) = x * s, where s(x) = torch.sigmoid(x-1)
double_swish'(x) = d/dx double_swish(x) = x * s'(x) + x' * s(x) = x * s'(x) + s(x).
Now, s'(x) = s(x) * (1-s(x)).
double_swish'(x) = x * s'(x) + s(x).
= x * s(x) * (1-s(x)) + s(x).
= double_swish(x) * (1-s(x)) + s(x)
... so we just need to remember s(x) but not x itself.
"""
@staticmethod
def forward(ctx, x: Tensor) -> Tensor:
x = x.detach()
s = torch.sigmoid(x - 1.0)
y = x * s
ctx.save_for_backward(s, y)
return y
@staticmethod
def backward(ctx, y_grad: Tensor) -> Tensor:
s, y = ctx.saved_tensors
return (y * (1 - s) + s) * y_grad
class DoubleSwish(torch.nn.Module):
def forward(self, x: Tensor) -> Tensor:
"""Return double-swish activation function which is an approximation to Swish(Swish(x)),
that we approximate closely with x * sigmoid(x-1).
"""
if torch.jit.is_scripting():
return x * torch.sigmoid(x - 1.0)
return DoubleSwishFunction.apply(x)
def _test_max_eig_limiter():
for proportion in [0.1, 0.5, 10.0]:
logging.info(f"proportion = {proportion}")
x = torch.randn(100, 128)
direction = torch.randn(128)
coeffs = torch.randn(100, 1)
x += proportion * direction * coeffs
x.requires_grad = True
y, new_direction = MaxEigLimiterFunction.apply(x, direction,
1, # channel_dim
True, # subtract_mean
0.5, # max_variance_proportion
0.1, # grad_scale
)
cosine = (new_direction * direction).sum() / (new_direction.norm() * direction.norm())
logging.info(f"Direction cosine = {cosine}")
y_grad = torch.randn_like(x)
y.backward(gradient=y_grad)
if proportion < 0.2:
assert torch.allclose(x.grad, y_grad)
elif proportion > 1.0:
assert not torch.allclose(x.grad, y_grad)
def _test_activation_balancer_sign():
probs = torch.arange(0, 1, 0.01)
N = 1000
x = 1.0 * (torch.rand(probs.numel(), N) < probs.unsqueeze(-1))
x = x.detach()
x.requires_grad = True
m = ActivationBalancer(
probs.numel(),
channel_dim=0,
min_positive=0.05,
max_positive=0.98,
max_factor=0.2,
min_abs=0.0,
)
y_grad = torch.sign(torch.randn(probs.numel(), N))
y = m(x)
y.backward(gradient=y_grad)
print("_test_activation_balancer_sign: x = ", x)
print("_test_activation_balancer_sign: y grad = ", y_grad)
print("_test_activation_balancer_sign: x grad = ", x.grad)
def _test_activation_balancer_magnitude():
magnitudes = torch.arange(0, 1, 0.01)
N = 1000
x = torch.sign(torch.randn(magnitudes.numel(), N)) * magnitudes.unsqueeze(
-1
)
x = x.detach()
x.requires_grad = True
m = ActivationBalancer(
magnitudes.numel(),
channel_dim=0,
min_positive=0.0,
max_positive=1.0,
max_factor=0.2,
min_abs=0.2,
max_abs=0.8,
)
y_grad = torch.sign(torch.randn(magnitudes.numel(), N))
y = m(x)
y.backward(gradient=y_grad)
print("_test_activation_balancer_magnitude: x = ", x)
print("_test_activation_balancer_magnitude: y grad = ", y_grad)
print("_test_activation_balancer_magnitude: x grad = ", x.grad)
def _test_basic_norm():
num_channels = 128
m = BasicNorm(num_channels=num_channels, channel_dim=1)
x = torch.randn(500, num_channels)
y = m(x)
assert y.shape == x.shape
x_rms = (x ** 2).mean().sqrt()
y_rms = (y ** 2).mean().sqrt()
print("x rms = ", x_rms)
print("y rms = ", y_rms)
assert y_rms < x_rms
assert y_rms > 0.5 * x_rms
def _test_double_swish_deriv():
x = torch.randn(10, 12, dtype=torch.double) * 0.5
x.requires_grad = True
m = DoubleSwish()
torch.autograd.gradcheck(m, x)
if __name__ == "__main__":
logging.getLogger().setLevel(logging.INFO)
torch.set_num_threads(1)
torch.set_num_interop_threads(1)
_test_max_eig_limiter()
_test_activation_balancer_sign()
_test_activation_balancer_magnitude()
_test_basic_norm()
_test_double_swish_deriv()