icefall/egs/ami/SURT/local/compute_fbank_ihm.py
Desh Raj 41b16d7838
SURT recipe for AMI and ICSI (#1133)
* merge upstream

* add SURT model and training

* add libricss decoding

* add chunk width randomization

* decode SURT with libricss

* initial commit for zipformer_ctc

* remove unwanted changes

* remove changes to other recipe

* fix zipformer softlink

* fix for JIT export

* add missing file

* fix symbolic links

* update results

* clean commit for SURT recipe

* training libricss surt model

* remove unwanted files

* remove unwanted changes

* remove changes in librispeech

* change some files to symlinks

* remove unwanted changes in utils

* add export script

* add README

* minor fix in README

* add assets for README

* replace some files with symlinks

* remove unused decoding methods

* initial commit for SURT AMI recipe

* fix symlink

* add train + decode scripts

* add missing symlink

* change files to symlink

* change file type
2023-07-08 23:01:51 +08:00

102 lines
3.3 KiB
Python
Executable File

#!/usr/bin/env python3
# Copyright 2022 Johns Hopkins University (authors: Desh Raj)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This file computes fbank features of the trimmed sub-segments which will be
used for simulating the training mixtures.
The generated fbank features are saved in data/fbank.
"""
import logging
import math
from pathlib import Path
import torch
import torch.multiprocessing
import torchaudio
from lhotse import CutSet, LilcomChunkyWriter, load_manifest
from lhotse.audio import set_ffmpeg_torchaudio_info_enabled
from lhotse.features.kaldifeat import (
KaldifeatFbank,
KaldifeatFbankConfig,
KaldifeatFrameOptions,
KaldifeatMelOptions,
)
from lhotse.recipes.utils import read_manifests_if_cached
from tqdm import tqdm
# Torch's multithreaded behavior needs to be disabled or
# it wastes a lot of CPU and slow things down.
# Do this outside of main() in case it needs to take effect
# even when we are not invoking the main (e.g. when spawning subprocesses).
torch.set_num_threads(1)
torch.set_num_interop_threads(1)
torch.multiprocessing.set_sharing_strategy("file_system")
torchaudio.set_audio_backend("soundfile")
set_ffmpeg_torchaudio_info_enabled(False)
def compute_fbank_ihm():
src_dir = Path("data/manifests")
output_dir = Path("data/fbank")
sampling_rate = 16000
num_mel_bins = 80
extractor = KaldifeatFbank(
KaldifeatFbankConfig(
frame_opts=KaldifeatFrameOptions(sampling_rate=sampling_rate),
mel_opts=KaldifeatMelOptions(num_bins=num_mel_bins),
device="cuda",
)
)
logging.info("Reading manifests")
manifests = {}
for data in ["ami", "icsi"]:
manifests[data] = read_manifests_if_cached(
dataset_parts=["train"],
output_dir=src_dir,
types=["recordings", "supervisions"],
prefix=f"{data}-ihm",
suffix="jsonl.gz",
)
logging.info("Computing features")
for data in ["ami", "icsi"]:
cs = CutSet.from_manifests(**manifests[data]["train"])
cs = cs.trim_to_supervisions(keep_overlapping=False)
cs = cs.normalize_loudness(target=-23.0, affix_id=False)
cs = cs + cs.perturb_speed(0.9) + cs.perturb_speed(1.1)
_ = cs.compute_and_store_features_batch(
extractor=extractor,
storage_path=output_dir / f"{data}-ihm_train_feats",
manifest_path=src_dir / f"{data}-ihm_cuts_train.jsonl.gz",
batch_duration=5000,
num_workers=4,
storage_type=LilcomChunkyWriter,
overwrite=True,
)
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
compute_fbank_ihm()