mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
956 lines
30 KiB
Python
Executable File
956 lines
30 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
#
|
|
# Copyright 2021-2022 Xiaomi Corporation (Author: Fangjun Kuang,
|
|
# Zengwei Yao)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
Usage:
|
|
(1) greedy search
|
|
./lstm_transducer_stateless/streaming_decode.py \
|
|
--epoch 35 \
|
|
--avg 10 \
|
|
--exp-dir lstm_transducer_stateless/exp \
|
|
--num-decode-streams 2000 \
|
|
--num-encoder-layers 12 \
|
|
--rnn-hidden-size 1024 \
|
|
--decoding-method greedy_search \
|
|
--use-averaged-model True
|
|
|
|
(2) modified beam search
|
|
./lstm_transducer_stateless/streaming_decode.py \
|
|
--epoch 35 \
|
|
--avg 10 \
|
|
--exp-dir lstm_transducer_stateless/exp \
|
|
--num-decode-streams 2000 \
|
|
--num-encoder-layers 12 \
|
|
--rnn-hidden-size 1024 \
|
|
--decoding-method modified_beam_search \
|
|
--use-averaged-model True \
|
|
--beam-size 4
|
|
|
|
(3) fast beam search
|
|
./lstm_transducer_stateless/streaming_decode.py \
|
|
--epoch 35 \
|
|
--avg 10 \
|
|
--exp-dir lstm_transducer_stateless/exp \
|
|
--num-decode-streams 2000 \
|
|
--num-encoder-layers 12 \
|
|
--rnn-hidden-size 1024 \
|
|
--decoding-method fast_beam_search \
|
|
--use-averaged-model True \
|
|
--beam 4 \
|
|
--max-contexts 4 \
|
|
--max-states 8
|
|
"""
|
|
import argparse
|
|
import logging
|
|
import warnings
|
|
from pathlib import Path
|
|
from typing import Dict, List, Optional, Tuple
|
|
|
|
import k2
|
|
import numpy as np
|
|
import sentencepiece as spm
|
|
import torch
|
|
import torch.nn as nn
|
|
from asr_datamodule import LibriSpeechAsrDataModule
|
|
from beam_search import Hypothesis, HypothesisList, get_hyps_shape
|
|
from kaldifeat import Fbank, FbankOptions
|
|
from lhotse import CutSet
|
|
from lstm import LOG_EPSILON, stack_states, unstack_states
|
|
from stream import Stream
|
|
from torch.nn.utils.rnn import pad_sequence
|
|
from train import add_model_arguments, get_params, get_transducer_model
|
|
|
|
from icefall.checkpoint import (
|
|
average_checkpoints,
|
|
average_checkpoints_with_averaged_model,
|
|
find_checkpoints,
|
|
load_checkpoint,
|
|
)
|
|
from icefall.decode import one_best_decoding
|
|
from icefall.utils import (
|
|
AttributeDict,
|
|
get_texts,
|
|
setup_logger,
|
|
store_transcripts,
|
|
str2bool,
|
|
write_error_stats,
|
|
)
|
|
|
|
|
|
def get_parser():
|
|
parser = argparse.ArgumentParser(
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--epoch",
|
|
type=int,
|
|
default=28,
|
|
help="It specifies the checkpoint to use for decoding."
|
|
"Note: Epoch counts from 0.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--iter",
|
|
type=int,
|
|
default=0,
|
|
help="""If positive, --epoch is ignored and it
|
|
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
|
You can specify --avg to use more checkpoints for model averaging.
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--avg",
|
|
type=int,
|
|
default=15,
|
|
help="Number of checkpoints to average. Automatically select "
|
|
"consecutive checkpoints before the checkpoint specified by "
|
|
"'--epoch'. ",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--use-averaged-model",
|
|
type=str2bool,
|
|
default=False,
|
|
help="Whether to load averaged model. Currently it only supports "
|
|
"using --epoch. If True, it would decode with the averaged model "
|
|
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
|
"Actually only the models with epoch number of `epoch-avg` and "
|
|
"`epoch` are loaded for averaging. ",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--exp-dir",
|
|
type=str,
|
|
default="transducer_emformer/exp",
|
|
help="The experiment dir",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--bpe-model",
|
|
type=str,
|
|
default="data/lang_bpe_500/bpe.model",
|
|
help="Path to the BPE model",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--decoding-method",
|
|
type=str,
|
|
default="greedy_search",
|
|
help="""Possible values are:
|
|
- greedy_search
|
|
- modified_beam_search
|
|
- fast_beam_search
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--beam-size",
|
|
type=int,
|
|
default=4,
|
|
help="""An interger indicating how many candidates we will keep for each
|
|
frame. Used only when --decoding-method is beam_search or
|
|
modified_beam_search.""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--beam",
|
|
type=float,
|
|
default=20.0,
|
|
help="""A floating point value to calculate the cutoff score during beam
|
|
search (i.e., `cutoff = max-score - beam`), which is the same as the
|
|
`beam` in Kaldi.
|
|
Used only when --decoding-method is fast_beam_search""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--max-contexts",
|
|
type=int,
|
|
default=8,
|
|
help="""Used only when --decoding-method is
|
|
fast_beam_search""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--max-states",
|
|
type=int,
|
|
default=64,
|
|
help="""Used only when --decoding-method is
|
|
fast_beam_search""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--context-size",
|
|
type=int,
|
|
default=2,
|
|
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
|
)
|
|
parser.add_argument(
|
|
"--max-sym-per-frame",
|
|
type=int,
|
|
default=1,
|
|
help="""Maximum number of symbols per frame.
|
|
Used only when --decoding_method is greedy_search""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--sampling-rate",
|
|
type=float,
|
|
default=16000,
|
|
help="Sample rate of the audio",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--num-decode-streams",
|
|
type=int,
|
|
default=2000,
|
|
help="The number of streams that can be decoded in parallel",
|
|
)
|
|
|
|
add_model_arguments(parser)
|
|
|
|
return parser
|
|
|
|
|
|
def greedy_search(
|
|
model: nn.Module,
|
|
encoder_out: torch.Tensor,
|
|
streams: List[Stream],
|
|
) -> None:
|
|
"""Greedy search in batch mode. It hardcodes --max-sym-per-frame=1.
|
|
|
|
Args:
|
|
model:
|
|
The transducer model.
|
|
encoder_out:
|
|
Output from the encoder. Its shape is (N, T, C), where N >= 1.
|
|
streams:
|
|
A list of Stream objects.
|
|
"""
|
|
assert len(streams) == encoder_out.size(0)
|
|
assert encoder_out.ndim == 3
|
|
|
|
blank_id = model.decoder.blank_id
|
|
context_size = model.decoder.context_size
|
|
device = next(model.parameters()).device
|
|
T = encoder_out.size(1)
|
|
|
|
encoder_out = model.joiner.encoder_proj(encoder_out)
|
|
|
|
decoder_input = torch.tensor(
|
|
[stream.hyp[-context_size:] for stream in streams],
|
|
device=device,
|
|
dtype=torch.int64,
|
|
)
|
|
# decoder_out is of shape (batch_size, 1, decoder_out_dim)
|
|
decoder_out = model.decoder(decoder_input, need_pad=False)
|
|
decoder_out = model.joiner.decoder_proj(decoder_out)
|
|
|
|
for t in range(T):
|
|
# current_encoder_out's shape: (batch_size, 1, encoder_out_dim)
|
|
current_encoder_out = encoder_out[:, t : t + 1, :] # noqa
|
|
|
|
logits = model.joiner(
|
|
current_encoder_out.unsqueeze(2),
|
|
decoder_out.unsqueeze(1),
|
|
project_input=False,
|
|
)
|
|
# logits'shape (batch_size, vocab_size)
|
|
logits = logits.squeeze(1).squeeze(1)
|
|
|
|
assert logits.ndim == 2, logits.shape
|
|
y = logits.argmax(dim=1).tolist()
|
|
emitted = False
|
|
for i, v in enumerate(y):
|
|
if v != blank_id:
|
|
streams[i].hyp.append(v)
|
|
emitted = True
|
|
if emitted:
|
|
# update decoder output
|
|
decoder_input = torch.tensor(
|
|
[stream.hyp[-context_size:] for stream in streams],
|
|
device=device,
|
|
dtype=torch.int64,
|
|
)
|
|
decoder_out = model.decoder(
|
|
decoder_input,
|
|
need_pad=False,
|
|
)
|
|
decoder_out = model.joiner.decoder_proj(decoder_out)
|
|
|
|
|
|
def modified_beam_search(
|
|
model: nn.Module,
|
|
encoder_out: torch.Tensor,
|
|
streams: List[Stream],
|
|
beam: int = 4,
|
|
):
|
|
"""Beam search in batch mode with --max-sym-per-frame=1 being hardcoded.
|
|
|
|
Args:
|
|
model:
|
|
The RNN-T model.
|
|
encoder_out:
|
|
A 3-D tensor of shape (N, T, encoder_out_dim) containing the output of
|
|
the encoder model.
|
|
streams:
|
|
A list of stream objects.
|
|
beam:
|
|
Number of active paths during the beam search.
|
|
"""
|
|
assert encoder_out.ndim == 3, encoder_out.shape
|
|
assert len(streams) == encoder_out.size(0)
|
|
|
|
blank_id = model.decoder.blank_id
|
|
context_size = model.decoder.context_size
|
|
device = next(model.parameters()).device
|
|
batch_size = len(streams)
|
|
T = encoder_out.size(1)
|
|
|
|
B = [stream.hyps for stream in streams]
|
|
|
|
encoder_out = model.joiner.encoder_proj(encoder_out)
|
|
|
|
for t in range(T):
|
|
current_encoder_out = encoder_out[:, t].unsqueeze(1).unsqueeze(1)
|
|
# current_encoder_out's shape: (batch_size, 1, 1, encoder_out_dim)
|
|
|
|
hyps_shape = get_hyps_shape(B).to(device)
|
|
|
|
A = [list(b) for b in B]
|
|
B = [HypothesisList() for _ in range(batch_size)]
|
|
|
|
ys_log_probs = torch.stack(
|
|
[hyp.log_prob.reshape(1) for hyps in A for hyp in hyps], dim=0
|
|
) # (num_hyps, 1)
|
|
|
|
decoder_input = torch.tensor(
|
|
[hyp.ys[-context_size:] for hyps in A for hyp in hyps],
|
|
device=device,
|
|
dtype=torch.int64,
|
|
) # (num_hyps, context_size)
|
|
|
|
decoder_out = model.decoder(decoder_input, need_pad=False).unsqueeze(1)
|
|
decoder_out = model.joiner.decoder_proj(decoder_out)
|
|
# decoder_out is of shape (num_hyps, 1, 1, decoder_output_dim)
|
|
|
|
# Note: For torch 1.7.1 and below, it requires a torch.int64 tensor
|
|
# as index, so we use `to(torch.int64)` below.
|
|
current_encoder_out = torch.index_select(
|
|
current_encoder_out,
|
|
dim=0,
|
|
index=hyps_shape.row_ids(1).to(torch.int64),
|
|
) # (num_hyps, encoder_out_dim)
|
|
|
|
logits = model.joiner(current_encoder_out, decoder_out, project_input=False)
|
|
# logits is of shape (num_hyps, 1, 1, vocab_size)
|
|
|
|
logits = logits.squeeze(1).squeeze(1)
|
|
|
|
log_probs = logits.log_softmax(dim=-1) # (num_hyps, vocab_size)
|
|
|
|
log_probs.add_(ys_log_probs)
|
|
|
|
vocab_size = log_probs.size(-1)
|
|
|
|
log_probs = log_probs.reshape(-1)
|
|
|
|
row_splits = hyps_shape.row_splits(1) * vocab_size
|
|
log_probs_shape = k2.ragged.create_ragged_shape2(
|
|
row_splits=row_splits, cached_tot_size=log_probs.numel()
|
|
)
|
|
ragged_log_probs = k2.RaggedTensor(shape=log_probs_shape, value=log_probs)
|
|
|
|
for i in range(batch_size):
|
|
topk_log_probs, topk_indexes = ragged_log_probs[i].topk(beam)
|
|
|
|
with warnings.catch_warnings():
|
|
warnings.simplefilter("ignore")
|
|
topk_hyp_indexes = (topk_indexes // vocab_size).tolist()
|
|
topk_token_indexes = (topk_indexes % vocab_size).tolist()
|
|
|
|
for k in range(len(topk_hyp_indexes)):
|
|
hyp_idx = topk_hyp_indexes[k]
|
|
hyp = A[i][hyp_idx]
|
|
|
|
new_ys = hyp.ys[:]
|
|
new_token = topk_token_indexes[k]
|
|
if new_token != blank_id:
|
|
new_ys.append(new_token)
|
|
|
|
new_log_prob = topk_log_probs[k]
|
|
new_hyp = Hypothesis(ys=new_ys, log_prob=new_log_prob)
|
|
B[i].add(new_hyp)
|
|
|
|
for i in range(batch_size):
|
|
streams[i].hyps = B[i]
|
|
|
|
|
|
def fast_beam_search_one_best(
|
|
model: nn.Module,
|
|
streams: List[Stream],
|
|
encoder_out: torch.Tensor,
|
|
processed_lens: torch.Tensor,
|
|
beam: float,
|
|
max_states: int,
|
|
max_contexts: int,
|
|
) -> None:
|
|
"""It limits the maximum number of symbols per frame to 1.
|
|
|
|
A lattice is first obtained using modified beam search, and then
|
|
the shortest path within the lattice is used as the final output.
|
|
|
|
Args:
|
|
model:
|
|
An instance of `Transducer`.
|
|
streams:
|
|
A list of stream objects.
|
|
encoder_out:
|
|
A tensor of shape (N, T, C) from the encoder.
|
|
processed_lens:
|
|
A tensor of shape (N,) containing the number of processed frames
|
|
in `encoder_out` before padding.
|
|
beam:
|
|
Beam value, similar to the beam used in Kaldi..
|
|
max_states:
|
|
Max states per stream per frame.
|
|
max_contexts:
|
|
Max contexts pre stream per frame.
|
|
"""
|
|
assert encoder_out.ndim == 3
|
|
|
|
context_size = model.decoder.context_size
|
|
vocab_size = model.decoder.vocab_size
|
|
|
|
B, T, C = encoder_out.shape
|
|
assert B == len(streams)
|
|
|
|
config = k2.RnntDecodingConfig(
|
|
vocab_size=vocab_size,
|
|
decoder_history_len=context_size,
|
|
beam=beam,
|
|
max_contexts=max_contexts,
|
|
max_states=max_states,
|
|
)
|
|
individual_streams = []
|
|
for i in range(B):
|
|
individual_streams.append(streams[i].rnnt_decoding_stream)
|
|
decoding_streams = k2.RnntDecodingStreams(individual_streams, config)
|
|
|
|
encoder_out = model.joiner.encoder_proj(encoder_out)
|
|
|
|
for t in range(T):
|
|
# shape is a RaggedShape of shape (B, context)
|
|
# contexts is a Tensor of shape (shape.NumElements(), context_size)
|
|
shape, contexts = decoding_streams.get_contexts()
|
|
# `nn.Embedding()` in torch below v1.7.1 supports only torch.int64
|
|
contexts = contexts.to(torch.int64)
|
|
# decoder_out is of shape (shape.NumElements(), 1, decoder_out_dim)
|
|
decoder_out = model.decoder(contexts, need_pad=False)
|
|
decoder_out = model.joiner.decoder_proj(decoder_out)
|
|
# current_encoder_out is of shape
|
|
# (shape.NumElements(), 1, joiner_dim)
|
|
# fmt: off
|
|
current_encoder_out = torch.index_select(
|
|
encoder_out[:, t:t + 1, :], 0, shape.row_ids(1).to(torch.int64)
|
|
)
|
|
# fmt: on
|
|
logits = model.joiner(
|
|
current_encoder_out.unsqueeze(2),
|
|
decoder_out.unsqueeze(1),
|
|
project_input=False,
|
|
)
|
|
logits = logits.squeeze(1).squeeze(1)
|
|
log_probs = logits.log_softmax(dim=-1)
|
|
decoding_streams.advance(log_probs)
|
|
|
|
decoding_streams.terminate_and_flush_to_streams()
|
|
|
|
lattice = decoding_streams.format_output(processed_lens.tolist())
|
|
|
|
best_path = one_best_decoding(lattice)
|
|
hyps = get_texts(best_path)
|
|
|
|
for i in range(B):
|
|
streams[i].hyp = hyps[i]
|
|
|
|
|
|
def decode_one_chunk(
|
|
model: nn.Module,
|
|
streams: List[Stream],
|
|
params: AttributeDict,
|
|
decoding_graph: Optional[k2.Fsa] = None,
|
|
) -> List[int]:
|
|
"""
|
|
Args:
|
|
model:
|
|
The Transducer model.
|
|
streams:
|
|
A list of Stream objects.
|
|
params:
|
|
It is returned by :func:`get_params`.
|
|
decoding_graph:
|
|
The decoding graph. Can be either a `k2.trivial_graph` or LG, Used
|
|
only when --decoding_method is fast_beam_search.
|
|
|
|
Returns:
|
|
A list of indexes indicating the finished streams.
|
|
"""
|
|
device = next(model.parameters()).device
|
|
|
|
feature_list = []
|
|
feature_len_list = []
|
|
state_list = []
|
|
num_processed_frames_list = []
|
|
|
|
for stream in streams:
|
|
# We should first get `stream.num_processed_frames`
|
|
# before calling `stream.get_feature_chunk()`
|
|
# since `stream.num_processed_frames` would be updated
|
|
num_processed_frames_list.append(stream.num_processed_frames)
|
|
feature = stream.get_feature_chunk()
|
|
feature_len = feature.size(0)
|
|
feature_list.append(feature)
|
|
feature_len_list.append(feature_len)
|
|
state_list.append(stream.states)
|
|
|
|
features = pad_sequence(
|
|
feature_list, batch_first=True, padding_value=LOG_EPSILON
|
|
).to(device)
|
|
feature_lens = torch.tensor(feature_len_list, device=device)
|
|
num_processed_frames = torch.tensor(num_processed_frames_list, device=device)
|
|
|
|
# Make sure it has at least 1 frame after subsampling
|
|
tail_length = params.subsampling_factor + 5
|
|
if features.size(1) < tail_length:
|
|
pad_length = tail_length - features.size(1)
|
|
feature_lens += pad_length
|
|
features = torch.nn.functional.pad(
|
|
features,
|
|
(0, 0, 0, pad_length),
|
|
mode="constant",
|
|
value=LOG_EPSILON,
|
|
)
|
|
|
|
# Stack states of all streams
|
|
states = stack_states(state_list)
|
|
|
|
encoder_out, encoder_out_lens, states = model.encoder(
|
|
x=features,
|
|
x_lens=feature_lens,
|
|
states=states,
|
|
)
|
|
|
|
if params.decoding_method == "greedy_search":
|
|
greedy_search(
|
|
model=model,
|
|
streams=streams,
|
|
encoder_out=encoder_out,
|
|
)
|
|
elif params.decoding_method == "modified_beam_search":
|
|
modified_beam_search(
|
|
model=model,
|
|
streams=streams,
|
|
encoder_out=encoder_out,
|
|
beam=params.beam_size,
|
|
)
|
|
elif params.decoding_method == "fast_beam_search":
|
|
# feature_len is needed to get partial results.
|
|
# The rnnt_decoding_stream for fast_beam_search.
|
|
with warnings.catch_warnings():
|
|
warnings.simplefilter("ignore")
|
|
processed_lens = (
|
|
num_processed_frames // params.subsampling_factor + encoder_out_lens
|
|
)
|
|
fast_beam_search_one_best(
|
|
model=model,
|
|
streams=streams,
|
|
encoder_out=encoder_out,
|
|
processed_lens=processed_lens,
|
|
beam=params.beam,
|
|
max_contexts=params.max_contexts,
|
|
max_states=params.max_states,
|
|
)
|
|
else:
|
|
raise ValueError(f"Unsupported decoding method: {params.decoding_method}")
|
|
|
|
# Update cached states of each stream
|
|
state_list = unstack_states(states)
|
|
for i, s in enumerate(state_list):
|
|
streams[i].states = s
|
|
|
|
finished_streams = [i for i, stream in enumerate(streams) if stream.done]
|
|
return finished_streams
|
|
|
|
|
|
def create_streaming_feature_extractor() -> Fbank:
|
|
"""Create a CPU streaming feature extractor.
|
|
|
|
At present, we assume it returns a fbank feature extractor with
|
|
fixed options. In the future, we will support passing in the options
|
|
from outside.
|
|
|
|
Returns:
|
|
Return a CPU streaming feature extractor.
|
|
"""
|
|
opts = FbankOptions()
|
|
opts.device = "cpu"
|
|
opts.frame_opts.dither = 0
|
|
opts.frame_opts.snip_edges = False
|
|
opts.frame_opts.samp_freq = 16000
|
|
opts.mel_opts.num_bins = 80
|
|
return Fbank(opts)
|
|
|
|
|
|
def decode_dataset(
|
|
cuts: CutSet,
|
|
model: nn.Module,
|
|
params: AttributeDict,
|
|
sp: spm.SentencePieceProcessor,
|
|
decoding_graph: Optional[k2.Fsa] = None,
|
|
):
|
|
"""Decode dataset.
|
|
|
|
Args:
|
|
cuts:
|
|
Lhotse Cutset containing the dataset to decode.
|
|
params:
|
|
It is returned by :func:`get_params`.
|
|
model:
|
|
The Transducer model.
|
|
sp:
|
|
The BPE model.
|
|
decoding_graph:
|
|
The decoding graph. Can be either a `k2.trivial_graph` or LG, Used
|
|
only when --decoding_method is fast_beam_search.
|
|
|
|
Returns:
|
|
Return a dict, whose key may be "greedy_search" if greedy search
|
|
is used, or it may be "beam_7" if beam size of 7 is used.
|
|
Its value is a list of tuples. Each tuple contains two elements:
|
|
The first is the reference transcript, and the second is the
|
|
predicted result.
|
|
"""
|
|
device = next(model.parameters()).device
|
|
|
|
log_interval = 300
|
|
|
|
fbank = create_streaming_feature_extractor()
|
|
|
|
decode_results = []
|
|
streams = []
|
|
for num, cut in enumerate(cuts):
|
|
# Each utterance has a Stream.
|
|
stream = Stream(
|
|
params=params,
|
|
cut_id=cut.id,
|
|
decoding_graph=decoding_graph,
|
|
device=device,
|
|
LOG_EPS=LOG_EPSILON,
|
|
)
|
|
|
|
stream.states = model.encoder.get_init_states(device=device)
|
|
|
|
audio: np.ndarray = cut.load_audio()
|
|
# audio.shape: (1, num_samples)
|
|
assert len(audio.shape) == 2
|
|
assert audio.shape[0] == 1, "Should be single channel"
|
|
assert audio.dtype == np.float32, audio.dtype
|
|
# The trained model is using normalized samples
|
|
assert audio.max() <= 1, "Should be normalized to [-1, 1])"
|
|
|
|
samples = torch.from_numpy(audio).squeeze(0)
|
|
feature = fbank(samples)
|
|
stream.set_feature(feature)
|
|
stream.ground_truth = cut.supervisions[0].text
|
|
|
|
streams.append(stream)
|
|
|
|
while len(streams) >= params.num_decode_streams:
|
|
finished_streams = decode_one_chunk(
|
|
model=model,
|
|
streams=streams,
|
|
params=params,
|
|
decoding_graph=decoding_graph,
|
|
)
|
|
|
|
for i in sorted(finished_streams, reverse=True):
|
|
decode_results.append(
|
|
(
|
|
streams[i].id,
|
|
streams[i].ground_truth.split(),
|
|
sp.decode(streams[i].decoding_result()).split(),
|
|
)
|
|
)
|
|
del streams[i]
|
|
|
|
if num % log_interval == 0:
|
|
logging.info(f"Cuts processed until now is {num}.")
|
|
|
|
while len(streams) > 0:
|
|
finished_streams = decode_one_chunk(
|
|
model=model,
|
|
streams=streams,
|
|
params=params,
|
|
decoding_graph=decoding_graph,
|
|
)
|
|
|
|
for i in sorted(finished_streams, reverse=True):
|
|
decode_results.append(
|
|
(
|
|
streams[i].id,
|
|
streams[i].ground_truth.split(),
|
|
sp.decode(streams[i].decoding_result()).split(),
|
|
)
|
|
)
|
|
del streams[i]
|
|
|
|
if params.decoding_method == "greedy_search":
|
|
key = "greedy_search"
|
|
elif params.decoding_method == "fast_beam_search":
|
|
key = (
|
|
f"beam_{params.beam}_"
|
|
f"max_contexts_{params.max_contexts}_"
|
|
f"max_states_{params.max_states}"
|
|
)
|
|
else:
|
|
key = f"beam_size_{params.beam_size}"
|
|
|
|
return {key: decode_results}
|
|
|
|
|
|
def save_results(
|
|
params: AttributeDict,
|
|
test_set_name: str,
|
|
results_dict: Dict[str, List[Tuple[List[str], List[str]]]],
|
|
):
|
|
test_set_wers = dict()
|
|
for key, results in results_dict.items():
|
|
recog_path = (
|
|
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
|
|
)
|
|
store_transcripts(filename=recog_path, texts=sorted(results))
|
|
logging.info(f"The transcripts are stored in {recog_path}")
|
|
|
|
# The following prints out WERs, per-word error statistics and aligned
|
|
# ref/hyp pairs.
|
|
errs_filename = (
|
|
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
|
|
)
|
|
with open(errs_filename, "w") as f:
|
|
wer = write_error_stats(
|
|
f, f"{test_set_name}-{key}", results, enable_log=True
|
|
)
|
|
test_set_wers[key] = wer
|
|
|
|
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
|
|
|
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
|
errs_info = (
|
|
params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
|
|
)
|
|
with open(errs_info, "w") as f:
|
|
print("settings\tWER", file=f)
|
|
for key, val in test_set_wers:
|
|
print("{}\t{}".format(key, val), file=f)
|
|
|
|
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
|
|
note = "\tbest for {}".format(test_set_name)
|
|
for key, val in test_set_wers:
|
|
s += "{}\t{}{}\n".format(key, val, note)
|
|
note = ""
|
|
logging.info(s)
|
|
|
|
|
|
@torch.no_grad()
|
|
def main():
|
|
parser = get_parser()
|
|
LibriSpeechAsrDataModule.add_arguments(parser)
|
|
args = parser.parse_args()
|
|
args.exp_dir = Path(args.exp_dir)
|
|
|
|
params = get_params()
|
|
params.update(vars(args))
|
|
|
|
assert params.decoding_method in (
|
|
"greedy_search",
|
|
"fast_beam_search",
|
|
"modified_beam_search",
|
|
)
|
|
params.res_dir = params.exp_dir / "streaming" / params.decoding_method
|
|
|
|
if params.iter > 0:
|
|
params.suffix = f"iter-{params.iter}-avg-{params.avg}"
|
|
else:
|
|
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
|
|
|
if "fast_beam_search" in params.decoding_method:
|
|
params.suffix += f"-beam-{params.beam}"
|
|
params.suffix += f"-max-contexts-{params.max_contexts}"
|
|
params.suffix += f"-max-states-{params.max_states}"
|
|
elif "beam_search" in params.decoding_method:
|
|
params.suffix += f"-{params.decoding_method}-beam-size-{params.beam_size}"
|
|
else:
|
|
params.suffix += f"-context-{params.context_size}"
|
|
params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
|
|
|
|
if params.use_averaged_model:
|
|
params.suffix += "-use-averaged-model"
|
|
|
|
setup_logger(f"{params.res_dir}/log-streaming-decode")
|
|
logging.info("Decoding started")
|
|
|
|
device = torch.device("cpu")
|
|
if torch.cuda.is_available():
|
|
device = torch.device("cuda", 0)
|
|
|
|
logging.info(f"Device: {device}")
|
|
|
|
sp = spm.SentencePieceProcessor()
|
|
sp.load(params.bpe_model)
|
|
|
|
# <blk> and <unk> are defined in local/train_bpe_model.py
|
|
params.blank_id = sp.piece_to_id("<blk>")
|
|
params.unk_id = sp.piece_to_id("<unk>")
|
|
params.vocab_size = sp.get_piece_size()
|
|
|
|
params.device = device
|
|
|
|
logging.info(params)
|
|
|
|
logging.info("About to create model")
|
|
model = get_transducer_model(params)
|
|
|
|
if not params.use_averaged_model:
|
|
if params.iter > 0:
|
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
|
: params.avg
|
|
]
|
|
if len(filenames) == 0:
|
|
raise ValueError(
|
|
f"No checkpoints found for"
|
|
f" --iter {params.iter}, --avg {params.avg}"
|
|
)
|
|
elif len(filenames) < params.avg:
|
|
raise ValueError(
|
|
f"Not enough checkpoints ({len(filenames)}) found for"
|
|
f" --iter {params.iter}, --avg {params.avg}"
|
|
)
|
|
logging.info(f"averaging {filenames}")
|
|
model.to(device)
|
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
|
elif params.avg == 1:
|
|
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
|
else:
|
|
start = params.epoch - params.avg + 1
|
|
filenames = []
|
|
for i in range(start, params.epoch + 1):
|
|
if i >= 1:
|
|
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
|
logging.info(f"averaging {filenames}")
|
|
model.to(device)
|
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
|
else:
|
|
if params.iter > 0:
|
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
|
: params.avg + 1
|
|
]
|
|
if len(filenames) == 0:
|
|
raise ValueError(
|
|
f"No checkpoints found for"
|
|
f" --iter {params.iter}, --avg {params.avg}"
|
|
)
|
|
elif len(filenames) < params.avg + 1:
|
|
raise ValueError(
|
|
f"Not enough checkpoints ({len(filenames)}) found for"
|
|
f" --iter {params.iter}, --avg {params.avg}"
|
|
)
|
|
filename_start = filenames[-1]
|
|
filename_end = filenames[0]
|
|
logging.info(
|
|
"Calculating the averaged model over iteration checkpoints"
|
|
f" from {filename_start} (excluded) to {filename_end}"
|
|
)
|
|
model.to(device)
|
|
model.load_state_dict(
|
|
average_checkpoints_with_averaged_model(
|
|
filename_start=filename_start,
|
|
filename_end=filename_end,
|
|
device=device,
|
|
)
|
|
)
|
|
else:
|
|
assert params.avg > 0, params.avg
|
|
start = params.epoch - params.avg
|
|
assert start >= 1, start
|
|
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
|
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
|
logging.info(
|
|
f"Calculating the averaged model over epoch range from "
|
|
f"{start} (excluded) to {params.epoch}"
|
|
)
|
|
model.to(device)
|
|
model.load_state_dict(
|
|
average_checkpoints_with_averaged_model(
|
|
filename_start=filename_start,
|
|
filename_end=filename_end,
|
|
device=device,
|
|
)
|
|
)
|
|
|
|
model.eval()
|
|
|
|
if params.decoding_method == "fast_beam_search":
|
|
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
|
|
else:
|
|
decoding_graph = None
|
|
|
|
num_param = sum([p.numel() for p in model.parameters()])
|
|
logging.info(f"Number of model parameters: {num_param}")
|
|
|
|
librispeech = LibriSpeechAsrDataModule(args)
|
|
|
|
test_clean_cuts = librispeech.test_clean_cuts()
|
|
test_other_cuts = librispeech.test_other_cuts()
|
|
|
|
test_sets = ["test-clean", "test-other"]
|
|
test_cuts = [test_clean_cuts, test_other_cuts]
|
|
|
|
for test_set, test_cut in zip(test_sets, test_cuts):
|
|
results_dict = decode_dataset(
|
|
cuts=test_cut,
|
|
model=model,
|
|
params=params,
|
|
sp=sp,
|
|
decoding_graph=decoding_graph,
|
|
)
|
|
|
|
save_results(
|
|
params=params,
|
|
test_set_name=test_set,
|
|
results_dict=results_dict,
|
|
)
|
|
|
|
logging.info("Done!")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
torch.manual_seed(20220810)
|
|
main()
|