mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
158 lines
5.2 KiB
Python
158 lines
5.2 KiB
Python
#!/usr/bin/env python3
|
|
# Copyright 2022 The University of Electro-Communications (Author: Teo Wen Shen) # noqa
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import argparse
|
|
import logging
|
|
import os
|
|
from itertools import islice
|
|
from pathlib import Path
|
|
from random import Random
|
|
from typing import List, Tuple
|
|
|
|
import torch
|
|
|
|
# fmt: off
|
|
from lhotse import ( # See the following for why LilcomChunkyWriter is preferred; https://github.com/k2-fsa/icefall/pull/404; https://github.com/lhotse-speech/lhotse/pull/527
|
|
CutSet,
|
|
Fbank,
|
|
FbankConfig,
|
|
LilcomChunkyWriter,
|
|
RecordingSet,
|
|
SupervisionSet,
|
|
)
|
|
|
|
# fmt: on
|
|
|
|
ARGPARSE_DESCRIPTION = """
|
|
This script follows the espnet method of splitting the remaining core+noncore
|
|
utterances into valid and train cutsets at an index which is by default 4000.
|
|
|
|
In other words, the core+noncore utterances are shuffled, where 4000 utterances
|
|
of the shuffled set go to the `valid` cutset and are not subject to speed
|
|
perturbation. The remaining utterances become the `train` cutset and are speed-
|
|
perturbed (0.9x, 1.0x, 1.1x).
|
|
|
|
"""
|
|
|
|
# Torch's multithreaded behavior needs to be disabled or
|
|
# it wastes a lot of CPU and slow things down.
|
|
# Do this outside of main() in case it needs to take effect
|
|
# even when we are not invoking the main (e.g. when spawning subprocesses).
|
|
torch.set_num_threads(1)
|
|
torch.set_num_interop_threads(1)
|
|
|
|
RNG_SEED = 42
|
|
|
|
|
|
def make_cutset_blueprints(
|
|
manifest_dir: Path,
|
|
split: int,
|
|
) -> List[Tuple[str, CutSet]]:
|
|
|
|
cut_sets = []
|
|
# Create eval datasets
|
|
logging.info("Creating eval cuts.")
|
|
for i in range(1, 4):
|
|
cut_set = CutSet.from_manifests(
|
|
recordings=RecordingSet.from_file(
|
|
manifest_dir / f"csj_recordings_eval{i}.jsonl.gz"
|
|
),
|
|
supervisions=SupervisionSet.from_file(
|
|
manifest_dir / f"csj_supervisions_eval{i}.jsonl.gz"
|
|
),
|
|
)
|
|
cut_set = cut_set.trim_to_supervisions(keep_overlapping=False)
|
|
cut_sets.append((f"eval{i}", cut_set))
|
|
|
|
# Create train and valid cuts
|
|
logging.info("Loading, trimming, and shuffling the remaining core+noncore cuts.")
|
|
recording_set = RecordingSet.from_file(
|
|
manifest_dir / "csj_recordings_core.jsonl.gz"
|
|
) + RecordingSet.from_file(manifest_dir / "csj_recordings_noncore.jsonl.gz")
|
|
supervision_set = SupervisionSet.from_file(
|
|
manifest_dir / "csj_supervisions_core.jsonl.gz"
|
|
) + SupervisionSet.from_file(manifest_dir / "csj_supervisions_noncore.jsonl.gz")
|
|
|
|
cut_set = CutSet.from_manifests(
|
|
recordings=recording_set,
|
|
supervisions=supervision_set,
|
|
)
|
|
cut_set = cut_set.trim_to_supervisions(keep_overlapping=False)
|
|
cut_set = cut_set.shuffle(Random(RNG_SEED))
|
|
|
|
logging.info(
|
|
"Creating valid and train cuts from core and noncore, split at {split}."
|
|
)
|
|
valid_set = CutSet.from_cuts(islice(cut_set, 0, split))
|
|
|
|
train_set = CutSet.from_cuts(islice(cut_set, split, None))
|
|
train_set = train_set + train_set.perturb_speed(0.9) + train_set.perturb_speed(1.1)
|
|
|
|
cut_sets.extend([("valid", valid_set), ("train", train_set)])
|
|
|
|
return cut_sets
|
|
|
|
|
|
def get_args():
|
|
parser = argparse.ArgumentParser(
|
|
description=ARGPARSE_DESCRIPTION,
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
|
|
)
|
|
|
|
parser.add_argument("--manifest-dir", type=Path, help="Path to save manifests")
|
|
parser.add_argument("--fbank-dir", type=Path, help="Path to save fbank features")
|
|
parser.add_argument("--split", type=int, default=4000, help="Split at this index")
|
|
|
|
return parser.parse_args()
|
|
|
|
|
|
def main():
|
|
args = get_args()
|
|
|
|
extractor = Fbank(FbankConfig(num_mel_bins=80))
|
|
num_jobs = min(16, os.cpu_count())
|
|
|
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
|
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
|
|
|
if (args.fbank_dir / ".done").exists():
|
|
logging.info(
|
|
"Previous fbank computed for CSJ found. "
|
|
f"Delete {args.fbank_dir / '.done'} to allow recomputing fbank."
|
|
)
|
|
return
|
|
else:
|
|
cut_sets = make_cutset_blueprints(args.manifest_dir, args.split)
|
|
for part, cut_set in cut_sets:
|
|
logging.info(f"Processing {part}")
|
|
cut_set = cut_set.compute_and_store_features(
|
|
extractor=extractor,
|
|
num_jobs=num_jobs,
|
|
storage_path=(args.fbank_dir / f"feats_{part}").as_posix(),
|
|
storage_type=LilcomChunkyWriter,
|
|
)
|
|
cut_set.to_file(args.manifest_dir / f"csj_cuts_{part}.jsonl.gz")
|
|
|
|
logging.info("All fbank computed for CSJ.")
|
|
(args.fbank_dir / ".done").touch()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|