icefall/egs/libritts/TTS/vocos/pretrained.py
2024-12-13 19:39:55 +08:00

197 lines
5.3 KiB
Python
Executable File

#!/usr/bin/env python3
# Copyright 2024 Xiaomi Corp. (authors: Wei Kang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script loads a checkpoint and uses it to decode waves.
You can generate the checkpoint with the following command:
"""
import argparse
import logging
import math
from pathlib import Path
from typing import List
import torch
import torchaudio
from torch.nn.utils.rnn import pad_sequence
from train import add_model_arguments, get_model, get_params
from lhotse import Fbank, FbankConfig
from icefall.utils import str2bool
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--checkpoint",
type=str,
required=True,
help="Path to the checkpoint. "
"The checkpoint is assumed to be saved by "
"icefall.checkpoint.save_checkpoint().",
)
parser.add_argument(
"--sampling-rate",
type=int,
default=24000,
help="The sampleing rate of libritts dataset",
)
parser.add_argument(
"--frame-shift",
type=int,
default=256,
help="Frame shift.",
)
parser.add_argument(
"--frame-length",
type=int,
default=1024,
help="Frame shift.",
)
parser.add_argument(
"--use-fft-mag",
type=str2bool,
default=True,
help="Whether to use magnitude of fbank, false to use power energy.",
)
parser.add_argument(
"--output-dir",
type=str,
default="generated_audios",
help="The generated will be written to.",
)
parser.add_argument(
"sound_files",
type=str,
nargs="+",
help="The input sound file(s) to transcribe. "
"Supported formats are those supported by torchaudio.load(). "
"For example, wav and flac are supported. "
"The sample rate has to be 16kHz.",
)
add_model_arguments(parser)
return parser
def read_sound_files(
filenames: List[str], expected_sample_rate: float
) -> List[torch.Tensor]:
"""Read a list of sound files into a list 1-D float32 torch tensors.
Args:
filenames:
A list of sound filenames.
expected_sample_rate:
The expected sample rate of the sound files.
Returns:
Return a list of 1-D float32 torch tensors.
"""
ans = []
for f in filenames:
wave, sample_rate = torchaudio.load(f)
assert (
sample_rate == expected_sample_rate
), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}"
# We use only the first channel
ans.append(wave[0].contiguous())
return ans
@torch.no_grad()
def main():
parser = get_parser()
args = parser.parse_args()
params = get_params()
params.update(vars(args))
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
params.device = device
output_dir = Path(params.checkpoint).parent / params.output_dir
output_dir.mkdir(exist_ok=True)
params.output_dir = output_dir
logging.info(f"{params}")
logging.info("Creating model")
model = get_model(params)
model = model.generator
checkpoint = torch.load(params.checkpoint, map_location="cpu")
model.load_state_dict(checkpoint["model"], strict=False)
model.to(device)
model.eval()
logging.info("Constructing Fbank computer")
config = FbankConfig(
sampling_rate=params.sampling_rate,
frame_length=params.frame_length / params.sampling_rate, # (in second),
frame_shift=params.frame_shift / params.sampling_rate, # (in second)
use_fft_mag=params.use_fft_mag,
)
fbank = Fbank(config)
logging.info(f"Reading sound files: {params.sound_files}")
waves = read_sound_files(
filenames=params.sound_files, expected_sample_rate=params.sampling_rate
)
wave_lengths = [w.size(0) for w in waves]
waves = pad_sequence(waves, batch_first=True, padding_value=0)
features = (
fbank.extract_batch(waves, sampling_rate=params.sampling_rate)
.permute(0, 2, 1)
.to(device)
)
logging.info("Generating started")
# model forward
audios = model(features)
for i, filename in enumerate(params.sound_files):
audio = audios[i : i + 1, 0 : wave_lengths[i]]
ofilename = params.output_dir / filename.split("/")[-1]
logging.info(f"Writting audio : {ofilename}")
torchaudio.save(str(ofilename), audio.cpu(), params.sampling_rate)
logging.info("Generating Done")
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
main()