mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-17 13:12:19 +00:00
314 lines
13 KiB
Python
314 lines
13 KiB
Python
# Copyright 2024 Xiaomi Corp. (authors: Zengwei Yao)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
# Copied from https://github.com/lhotse-speech/lhotse/blob/master/lhotse/dataset/signal_transforms.py
|
|
# with minor modification for cr-ctc training.
|
|
|
|
|
|
import math
|
|
import random
|
|
from typing import Any, Dict, Optional, Tuple
|
|
|
|
import torch
|
|
from lhotse.dataset.signal_transforms import time_warp as time_warp_impl
|
|
|
|
|
|
class SpecAugment(torch.nn.Module):
|
|
"""SpecAugment from lhotse with minor modification, returning time masks.
|
|
|
|
SpecAugment performs three augmentations:
|
|
- time warping of the feature matrix
|
|
- masking of ranges of features (frequency bands)
|
|
- masking of ranges of frames (time)
|
|
|
|
The current implementation works with batches, but processes each example separately
|
|
in a loop rather than simultaneously to achieve different augmentation parameters for
|
|
each example.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
time_warp_factor: Optional[int] = 80,
|
|
num_feature_masks: int = 2,
|
|
features_mask_size: int = 27,
|
|
num_frame_masks: int = 10,
|
|
frames_mask_size: int = 100,
|
|
max_frames_mask_fraction: float = 0.15,
|
|
p=0.9,
|
|
):
|
|
"""
|
|
SpecAugment's constructor.
|
|
|
|
:param time_warp_factor: parameter for the time warping; larger values mean more warping.
|
|
Set to ``None``, or less than ``1``, to disable.
|
|
:param num_feature_masks: how many feature masks should be applied. Set to ``0`` to disable.
|
|
:param features_mask_size: the width of the feature mask (expressed in the number of masked feature bins).
|
|
This is the ``F`` parameter from the SpecAugment paper.
|
|
:param num_frame_masks: the number of masking regions for utterances. Set to ``0`` to disable.
|
|
:param frames_mask_size: the width of the frame (temporal) masks (expressed in the number of masked frames).
|
|
This is the ``T`` parameter from the SpecAugment paper.
|
|
:param max_frames_mask_fraction: limits the size of the frame (temporal) mask to this value times the length
|
|
of the utterance (or supervision segment).
|
|
This is the parameter denoted by ``p`` in the SpecAugment paper.
|
|
:param p: the probability of applying this transform.
|
|
It is different from ``p`` in the SpecAugment paper!
|
|
"""
|
|
super().__init__()
|
|
assert 0 <= p <= 1
|
|
assert num_feature_masks >= 0
|
|
assert num_frame_masks >= 0
|
|
assert features_mask_size > 0
|
|
assert frames_mask_size > 0
|
|
self.time_warp_factor = time_warp_factor
|
|
self.num_feature_masks = num_feature_masks
|
|
self.features_mask_size = features_mask_size
|
|
self.num_frame_masks = num_frame_masks
|
|
self.frames_mask_size = frames_mask_size
|
|
self.max_frames_mask_fraction = max_frames_mask_fraction
|
|
self.p = p
|
|
|
|
def forward(
|
|
self,
|
|
features: torch.Tensor,
|
|
supervision_segments: Optional[torch.IntTensor] = None,
|
|
*args,
|
|
**kwargs,
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
"""
|
|
Computes SpecAugment for a batch of feature matrices.
|
|
|
|
Since the batch will usually already be padded, the user can optionally
|
|
provide a ``supervision_segments`` tensor that will be used to apply SpecAugment
|
|
only to selected areas of the input. The format of this input is described below.
|
|
|
|
:param features: a batch of feature matrices with shape ``(B, T, F)``.
|
|
:param supervision_segments: an int tensor of shape ``(S, 3)``. ``S`` is the number of
|
|
supervision segments that exist in ``features`` -- there may be either
|
|
less or more than the batch size.
|
|
The second dimension encoder three kinds of information:
|
|
the sequence index of the corresponding feature matrix in `features`,
|
|
the start frame index, and the number of frames for each segment.
|
|
:return:
|
|
- an augmented tensor of shape ``(B, T, F)``.
|
|
- the corresponding time masks of shape ``(B, T)``.
|
|
"""
|
|
assert len(features.shape) == 3, (
|
|
"SpecAugment only supports batches of " "single-channel feature matrices."
|
|
)
|
|
features = features.clone()
|
|
|
|
time_masks = []
|
|
|
|
if supervision_segments is None:
|
|
# No supervisions - apply spec augment to full feature matrices.
|
|
for sequence_idx in range(features.size(0)):
|
|
masked_feature, time_mask = self._forward_single(features[sequence_idx])
|
|
features[sequence_idx] = masked_feature
|
|
time_masks.append(time_mask)
|
|
else:
|
|
# Supervisions provided - we will apply time warping only on the supervised areas.
|
|
for sequence_idx, start_frame, num_frames in supervision_segments:
|
|
end_frame = start_frame + num_frames
|
|
warped_feature, _ = self._forward_single(
|
|
features[sequence_idx, start_frame:end_frame], warp=True, mask=False
|
|
)
|
|
features[sequence_idx, start_frame:end_frame] = warped_feature
|
|
# ... and then time-mask the full feature matrices. Note that in this mode,
|
|
# it might happen that masks are applied to different sequences/examples
|
|
# than the time warping.
|
|
for sequence_idx in range(features.size(0)):
|
|
masked_feature, time_mask = self._forward_single(
|
|
features[sequence_idx], warp=False, mask=True
|
|
)
|
|
features[sequence_idx] = masked_feature
|
|
time_masks.append(time_mask)
|
|
|
|
time_masks = torch.cat(time_masks, dim=0)
|
|
assert time_masks.shape == features.shape[:-1], (time_masks.shape == features.shape[:-1])
|
|
return features, time_masks
|
|
|
|
def _forward_single(
|
|
self, features: torch.Tensor, warp: bool = True, mask: bool = True
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
"""
|
|
Apply SpecAugment to a single feature matrix of shape (T, F).
|
|
"""
|
|
if random.random() > self.p:
|
|
# Randomly choose whether this transform is applied
|
|
time_mask = torch.zeros(
|
|
1, features.size(0), dtype=torch.bool, device=features.device
|
|
)
|
|
return features, time_mask
|
|
|
|
time_mask = None
|
|
if warp:
|
|
if self.time_warp_factor is not None and self.time_warp_factor >= 1:
|
|
features = time_warp_impl(features, factor=self.time_warp_factor)
|
|
|
|
if mask:
|
|
mean = features.mean()
|
|
# Frequency masking
|
|
features, _ = mask_along_axis_optimized(
|
|
features,
|
|
mask_size=self.features_mask_size,
|
|
mask_times=self.num_feature_masks,
|
|
mask_value=mean,
|
|
axis=2,
|
|
)
|
|
# Time masking
|
|
max_tot_mask_frames = self.max_frames_mask_fraction * features.size(0)
|
|
num_frame_masks = min(
|
|
self.num_frame_masks,
|
|
math.ceil(max_tot_mask_frames / self.frames_mask_size),
|
|
)
|
|
max_mask_frames = min(
|
|
self.frames_mask_size, max_tot_mask_frames // num_frame_masks
|
|
)
|
|
features, time_mask = mask_along_axis_optimized(
|
|
features,
|
|
mask_size=max_mask_frames,
|
|
mask_times=num_frame_masks,
|
|
mask_value=mean,
|
|
axis=1,
|
|
return_time_mask=True,
|
|
)
|
|
|
|
return features, time_mask
|
|
|
|
def state_dict(self, **kwargs) -> Dict[str, Any]:
|
|
return dict(
|
|
time_warp_factor=self.time_warp_factor,
|
|
num_feature_masks=self.num_feature_masks,
|
|
features_mask_size=self.features_mask_size,
|
|
num_frame_masks=self.num_frame_masks,
|
|
frames_mask_size=self.frames_mask_size,
|
|
max_frames_mask_fraction=self.max_frames_mask_fraction,
|
|
p=self.p,
|
|
)
|
|
|
|
def load_state_dict(self, state_dict: Dict[str, Any]):
|
|
self.time_warp_factor = state_dict.get(
|
|
"time_warp_factor", self.time_warp_factor
|
|
)
|
|
self.num_feature_masks = state_dict.get(
|
|
"num_feature_masks", self.num_feature_masks
|
|
)
|
|
self.features_mask_size = state_dict.get(
|
|
"features_mask_size", self.features_mask_size
|
|
)
|
|
self.num_frame_masks = state_dict.get("num_frame_masks", self.num_frame_masks)
|
|
self.frames_mask_size = state_dict.get(
|
|
"frames_mask_size", self.frames_mask_size
|
|
)
|
|
self.max_frames_mask_fraction = state_dict.get(
|
|
"max_frames_mask_fraction", self.max_frames_mask_fraction
|
|
)
|
|
self.p = state_dict.get("p", self.p)
|
|
|
|
|
|
def mask_along_axis_optimized(
|
|
features: torch.Tensor,
|
|
mask_size: int,
|
|
mask_times: int,
|
|
mask_value: float,
|
|
axis: int,
|
|
return_time_mask: bool = False,
|
|
) -> torch.Tensor:
|
|
"""
|
|
Apply Frequency and Time masking along axis.
|
|
Frequency and Time masking as described in the SpecAugment paper.
|
|
|
|
:param features: input tensor of shape ``(T, F)``
|
|
:mask_size: the width size for masking.
|
|
:mask_times: the number of masking regions.
|
|
:mask_value: Value to assign to the masked regions.
|
|
:axis: Axis to apply masking on (1 -> time, 2 -> frequency)
|
|
:return_time_mask: Whether return the time mask of shape ``(1, T)``
|
|
"""
|
|
if axis not in [1, 2]:
|
|
raise ValueError("Only Frequency and Time masking are supported!")
|
|
|
|
if return_time_mask and axis == 1:
|
|
time_mask = torch.zeros(
|
|
1, features.size(0), dtype=torch.bool, device=features.device
|
|
)
|
|
else:
|
|
time_mask = None
|
|
|
|
features = features.unsqueeze(0)
|
|
features = features.reshape([-1] + list(features.size()[-2:]))
|
|
|
|
values = torch.randint(int(0), int(mask_size), (1, mask_times))
|
|
min_values = torch.rand(1, mask_times) * (features.size(axis) - values)
|
|
mask_starts = (min_values.long()).squeeze()
|
|
mask_ends = (min_values.long() + values.long()).squeeze()
|
|
|
|
if axis == 1:
|
|
if mask_times == 1:
|
|
features[:, mask_starts:mask_ends] = mask_value
|
|
if return_time_mask:
|
|
time_mask[:, mask_starts:mask_ends] = True
|
|
return features.squeeze(0), time_mask
|
|
for (mask_start, mask_end) in zip(mask_starts, mask_ends):
|
|
features[:, mask_start:mask_end] = mask_value
|
|
if return_time_mask:
|
|
time_mask[:, mask_start:mask_end] = True
|
|
else:
|
|
if mask_times == 1:
|
|
features[:, :, mask_starts:mask_ends] = mask_value
|
|
return features.squeeze(0), time_mask
|
|
for (mask_start, mask_end) in zip(mask_starts, mask_ends):
|
|
features[:, :, mask_start:mask_end] = mask_value
|
|
|
|
features = features.squeeze(0)
|
|
return features, time_mask
|
|
|
|
|
|
def time_warp(
|
|
features: torch.Tensor,
|
|
p: float = 0.9,
|
|
time_warp_factor: Optional[int] = 80,
|
|
supervision_segments: Optional[torch.Tensor] = None,
|
|
):
|
|
if time_warp_factor is None or time_warp_factor < 1:
|
|
return features
|
|
assert len(features.shape) == 3, (
|
|
"SpecAugment only supports batches of single-channel feature matrices."
|
|
)
|
|
features = features.clone()
|
|
if supervision_segments is None:
|
|
# No supervisions - apply spec augment to full feature matrices.
|
|
for sequence_idx in range(features.size(0)):
|
|
if random.random() > p:
|
|
# Randomly choose whether this transform is applied
|
|
continue
|
|
features[sequence_idx] = time_warp_impl(
|
|
features[sequence_idx], factor=time_warp_factor
|
|
)
|
|
else:
|
|
# Supervisions provided - we will apply time warping only on the supervised areas.
|
|
for sequence_idx, start_frame, num_frames in supervision_segments:
|
|
if random.random() > p:
|
|
# Randomly choose whether this transform is applied
|
|
continue
|
|
end_frame = start_frame + num_frames
|
|
features[sequence_idx, start_frame:end_frame] = time_warp_impl(
|
|
features[sequence_idx, start_frame:end_frame], factor=time_warp_factor
|
|
)
|
|
|
|
return features
|