mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 01:52:41 +00:00
* add f5 * add infer * add dit * add README * update pretrained checkpoint usage --------- Co-authored-by: yuekaiz <yuekaiz@h20-5.cm.cluster> Co-authored-by: yuekaiz <yuekaiz@l20-3.cm.cluster> Co-authored-by: yuekaiz <yuekaiz@h20-6.cm.cluster> Co-authored-by: zr_jin <peter.jin.cn@gmail.com>
1179 lines
37 KiB
Python
Executable File
1179 lines
37 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# Copyright 2021-2022 Xiaomi Corp. (authors: Fangjun Kuang,
|
|
# Wei Kang,
|
|
# Mingshuang Luo)
|
|
# Copyright 2023 (authors: Feiteng Li)
|
|
# Copyright 2024 (authors: Yuekai Zhang)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
Usage:
|
|
# docker: ghcr.io/swivid/f5-tts:main
|
|
# pip install k2==1.24.4.dev20241030+cuda12.4.torch2.4.0 -f https://k2-fsa.github.io/k2/cuda.html
|
|
# pip install kaldialign lhotse tensorboard bigvganinference sentencepiece
|
|
|
|
world_size=8
|
|
exp_dir=exp/f5-tts-small
|
|
python3 f5-tts/train.py --max-duration 700 --filter-min-duration 0.5 --filter-max-duration 20 \
|
|
--num-buckets 6 --dtype "bfloat16" --save-every-n 5000 --valid-interval 10000 \
|
|
--base-lr 7.5e-5 --warmup-steps 20000 --num-epochs 60 \
|
|
--num-decoder-layers 18 --nhead 12 --decoder-dim 768 \
|
|
--exp-dir ${exp_dir} --world-size ${world_size}
|
|
"""
|
|
|
|
import argparse
|
|
import copy
|
|
import logging
|
|
import os
|
|
import random
|
|
import warnings
|
|
from contextlib import nullcontext
|
|
from pathlib import Path
|
|
from shutil import copyfile
|
|
from typing import Any, Dict, Optional, Tuple, Union
|
|
|
|
import torch
|
|
import torch.multiprocessing as mp
|
|
import torch.nn as nn
|
|
from lhotse import CutSet
|
|
from lhotse.cut import Cut
|
|
from lhotse.dataset.sampling.base import CutSampler
|
|
from lhotse.utils import fix_random_seed
|
|
from model.cfm import CFM
|
|
from model.dit import DiT
|
|
from model.utils import convert_char_to_pinyin
|
|
from torch import Tensor
|
|
from torch.amp import GradScaler
|
|
from torch.nn.parallel import DistributedDataParallel as DDP
|
|
from torch.optim.lr_scheduler import LinearLR, SequentialLR
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
from tts_datamodule import TtsDataModule
|
|
from utils import MetricsTracker
|
|
|
|
from icefall.checkpoint import load_checkpoint, remove_checkpoints
|
|
from icefall.checkpoint import save_checkpoint as save_checkpoint_impl
|
|
from icefall.checkpoint import (
|
|
save_checkpoint_with_global_batch_idx,
|
|
update_averaged_model,
|
|
)
|
|
from icefall.dist import cleanup_dist, setup_dist
|
|
from icefall.env import get_env_info
|
|
from icefall.hooks import register_inf_check_hooks
|
|
from icefall.utils import AttributeDict, setup_logger, str2bool # MetricsTracker
|
|
|
|
LRSchedulerType = torch.optim.lr_scheduler._LRScheduler
|
|
|
|
|
|
def set_batch_count(model: Union[nn.Module, DDP], batch_count: float) -> None:
|
|
if isinstance(model, DDP):
|
|
# get underlying nn.Module
|
|
model = model.module
|
|
|
|
for module in model.modules():
|
|
if hasattr(module, "batch_count"):
|
|
module.batch_count = batch_count
|
|
|
|
|
|
def add_model_arguments(parser: argparse.ArgumentParser):
|
|
parser.add_argument(
|
|
"--decoder-dim",
|
|
type=int,
|
|
default=1024,
|
|
help="Embedding dimension in the decoder model.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--nhead",
|
|
type=int,
|
|
default=16,
|
|
help="Number of attention heads in the Decoder layers.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--num-decoder-layers",
|
|
type=int,
|
|
default=22,
|
|
help="Number of Decoder layers.",
|
|
)
|
|
|
|
|
|
def get_parser():
|
|
parser = argparse.ArgumentParser(
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--world-size",
|
|
type=int,
|
|
default=1,
|
|
help="Number of GPUs for DDP training.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--master-port",
|
|
type=int,
|
|
default=12354,
|
|
help="Master port to use for DDP training.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--tensorboard",
|
|
type=str2bool,
|
|
default=True,
|
|
help="Should various information be logged in tensorboard.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--num-epochs",
|
|
type=int,
|
|
default=20,
|
|
help="Number of epochs to train.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--start-epoch",
|
|
type=int,
|
|
default=1,
|
|
help="""Resume training from this epoch. It should be positive.
|
|
If larger than 1, it will load checkpoint from
|
|
exp-dir/epoch-{start_epoch-1}.pt
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--start-batch",
|
|
type=int,
|
|
default=0,
|
|
help="""If positive, --start-epoch is ignored and
|
|
it loads the checkpoint from exp-dir/checkpoint-{start_batch}.pt
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--exp-dir",
|
|
type=Path,
|
|
default="exp/f5",
|
|
help="""The experiment dir.
|
|
It specifies the directory where all training related
|
|
files, e.g., checkpoints, log, etc, are saved
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--tokens",
|
|
type=str,
|
|
default="f5-tts/vocab.txt",
|
|
help="Path to the unique text tokens file",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--pretrained-model-path",
|
|
type=str,
|
|
default=None,
|
|
help="Path to file",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--optimizer-name",
|
|
type=str,
|
|
default="AdamW",
|
|
help="The optimizer.",
|
|
)
|
|
parser.add_argument(
|
|
"--base-lr", type=float, default=0.05, help="The base learning rate."
|
|
)
|
|
parser.add_argument(
|
|
"--warmup-steps",
|
|
type=int,
|
|
default=200,
|
|
help="""Number of steps that affects how rapidly the learning rate
|
|
decreases. We suggest not to change this.""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--decay-steps",
|
|
type=int,
|
|
default=1000000,
|
|
help="""Number of steps that affects how rapidly the learning rate
|
|
decreases. We suggest not to change this.""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--seed",
|
|
type=int,
|
|
default=42,
|
|
help="The seed for random generators intended for reproducibility",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--inf-check",
|
|
type=str2bool,
|
|
default=False,
|
|
help="Add hooks to check for infinite module outputs and gradients.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--save-every-n",
|
|
type=int,
|
|
default=10000,
|
|
help="""Save checkpoint after processing this number of batches"
|
|
periodically. We save checkpoint to exp-dir/ whenever
|
|
params.batch_idx_train %% save_every_n == 0. The checkpoint filename
|
|
has the form: f'exp-dir/checkpoint-{params.batch_idx_train}.pt'
|
|
Note: It also saves checkpoint to `exp-dir/epoch-xxx.pt` at the
|
|
end of each epoch where `xxx` is the epoch number counting from 0.
|
|
""",
|
|
)
|
|
parser.add_argument(
|
|
"--valid-interval",
|
|
type=int,
|
|
default=10000,
|
|
help="""Run validation if batch_idx %% valid_interval is 0.""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--keep-last-k",
|
|
type=int,
|
|
default=20,
|
|
help="""Only keep this number of checkpoints on disk.
|
|
For instance, if it is 3, there are only 3 checkpoints
|
|
in the exp-dir with filenames `checkpoint-xxx.pt`.
|
|
It does not affect checkpoints with name `epoch-xxx.pt`.
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--average-period",
|
|
type=int,
|
|
default=0,
|
|
help="""Update the averaged model, namely `model_avg`, after processing
|
|
this number of batches. `model_avg` is a separate version of model,
|
|
in which each floating-point parameter is the average of all the
|
|
parameters from the start of training. Each time we take the average,
|
|
we do: `model_avg = model * (average_period / batch_idx_train) +
|
|
model_avg * ((batch_idx_train - average_period) / batch_idx_train)`.
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--accumulate-grad-steps",
|
|
type=int,
|
|
default=1,
|
|
help="""update gradient when batch_idx_train %% accumulate_grad_steps == 0.
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--dtype",
|
|
type=str,
|
|
default="bfloat16",
|
|
help="Training dtype: float32 bfloat16 float16.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--filter-min-duration",
|
|
type=float,
|
|
default=0.0,
|
|
help="Keep only utterances with duration > this.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--filter-max-duration",
|
|
type=float,
|
|
default=20.0,
|
|
help="Keep only utterances with duration < this.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--oom-check",
|
|
type=str2bool,
|
|
default=False,
|
|
help="perform OOM check on dataloader batches before starting training.",
|
|
)
|
|
|
|
add_model_arguments(parser)
|
|
|
|
return parser
|
|
|
|
|
|
def get_params() -> AttributeDict:
|
|
"""Return a dict containing training parameters.
|
|
|
|
All training related parameters that are not passed from the commandline
|
|
are saved in the variable `params`.
|
|
|
|
Commandline options are merged into `params` after they are parsed, so
|
|
you can also access them via `params`.
|
|
|
|
Explanation of options saved in `params`:
|
|
|
|
- best_train_loss: Best training loss so far. It is used to select
|
|
the model that has the lowest training loss. It is
|
|
updated during the training.
|
|
|
|
- best_valid_loss: Best validation loss so far. It is used to select
|
|
the model that has the lowest validation loss. It is
|
|
updated during the training.
|
|
|
|
- best_train_epoch: It is the epoch that has the best training loss.
|
|
|
|
- best_valid_epoch: It is the epoch that has the best validation loss.
|
|
|
|
- batch_idx_train: Used to writing statistics to tensorboard. It
|
|
contains number of batches trained so far across
|
|
epochs.
|
|
|
|
- log_interval: Print training loss if batch_idx % log_interval` is 0
|
|
|
|
- reset_interval: Reset statistics if batch_idx % reset_interval is 0
|
|
|
|
- valid_interval: Run validation if batch_idx % valid_interval is 0
|
|
"""
|
|
params = AttributeDict(
|
|
{
|
|
"best_train_loss": float("inf"),
|
|
"best_valid_loss": float("inf"),
|
|
"best_train_epoch": -1,
|
|
"best_valid_epoch": -1,
|
|
"batch_idx_train": 0,
|
|
"log_interval": 100,
|
|
"reset_interval": 200,
|
|
"valid_interval": 10000,
|
|
"env_info": get_env_info(),
|
|
}
|
|
)
|
|
|
|
return params
|
|
|
|
|
|
def get_tokenizer(vocab_file_path: str):
|
|
"""
|
|
tokenizer - "pinyin" do g2p for only chinese characters, need .txt vocab_file
|
|
- "char" for char-wise tokenizer, need .txt vocab_file
|
|
- "byte" for utf-8 tokenizer
|
|
- "custom" if you're directly passing in a path to the vocab.txt you want to use
|
|
vocab_size - if use "pinyin", all available pinyin types, common alphabets (also those with accent) and symbols
|
|
- if use "char", derived from unfiltered character & symbol counts of custom dataset
|
|
- if use "byte", set to 256 (unicode byte range)
|
|
"""
|
|
with open(vocab_file_path, "r", encoding="utf-8") as f:
|
|
vocab_char_map = {}
|
|
for i, char in enumerate(f):
|
|
vocab_char_map[char[:-1]] = i
|
|
vocab_size = len(vocab_char_map)
|
|
|
|
return vocab_char_map, vocab_size
|
|
|
|
|
|
def get_model(params):
|
|
vocab_char_map, vocab_size = get_tokenizer(params.tokens)
|
|
# bigvgan 100 dim features
|
|
n_mel_channels = 100
|
|
n_fft = 1024
|
|
sampling_rate = 24_000
|
|
hop_length = 256
|
|
win_length = 1024
|
|
|
|
model_cfg = {
|
|
"dim": params.decoder_dim,
|
|
"depth": params.num_decoder_layers,
|
|
"heads": params.nhead,
|
|
"ff_mult": 2,
|
|
"text_dim": 512,
|
|
"conv_layers": 4,
|
|
"checkpoint_activations": False,
|
|
}
|
|
model = CFM(
|
|
transformer=DiT(
|
|
**model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels
|
|
),
|
|
mel_spec_kwargs=dict(
|
|
n_fft=n_fft,
|
|
hop_length=hop_length,
|
|
win_length=win_length,
|
|
n_mel_channels=n_mel_channels,
|
|
target_sample_rate=sampling_rate,
|
|
mel_spec_type="bigvgan",
|
|
),
|
|
odeint_kwargs=dict(
|
|
method="euler",
|
|
),
|
|
vocab_char_map=vocab_char_map,
|
|
)
|
|
return model
|
|
|
|
|
|
def load_F5_TTS_pretrained_checkpoint(
|
|
model, ckpt_path, device: str = "cpu", dtype=torch.float32
|
|
):
|
|
checkpoint = torch.load(ckpt_path, map_location=device, weights_only=True)
|
|
if "ema_model_state_dict" in checkpoint:
|
|
checkpoint["model_state_dict"] = {
|
|
k.replace("ema_model.", ""): v
|
|
for k, v in checkpoint["ema_model_state_dict"].items()
|
|
if k not in ["initted", "step"]
|
|
}
|
|
|
|
# patch for backward compatibility, 305e3ea
|
|
for key in [
|
|
"mel_spec.mel_stft.mel_scale.fb",
|
|
"mel_spec.mel_stft.spectrogram.window",
|
|
]:
|
|
if key in checkpoint["model_state_dict"]:
|
|
del checkpoint["model_state_dict"][key]
|
|
model.load_state_dict(checkpoint["model_state_dict"])
|
|
return model
|
|
|
|
|
|
def load_checkpoint_if_available(
|
|
params: AttributeDict,
|
|
model: nn.Module,
|
|
model_avg: nn.Module = None,
|
|
optimizer: Optional[torch.optim.Optimizer] = None,
|
|
scheduler: Optional[LRSchedulerType] = None,
|
|
) -> Optional[Dict[str, Any]]:
|
|
"""Load checkpoint from file.
|
|
|
|
If params.start_batch is positive, it will load the checkpoint from
|
|
`params.exp_dir/checkpoint-{params.start_batch}.pt`. Otherwise, if
|
|
params.start_epoch is larger than 1, it will load the checkpoint from
|
|
`params.start_epoch - 1`.
|
|
|
|
Apart from loading state dict for `model` and `optimizer` it also updates
|
|
`best_train_epoch`, `best_train_loss`, `best_valid_epoch`,
|
|
and `best_valid_loss` in `params`.
|
|
|
|
Args:
|
|
params:
|
|
The return value of :func:`get_params`.
|
|
model:
|
|
The training model.
|
|
model_avg:
|
|
The stored model averaged from the start of training.
|
|
optimizer:
|
|
The optimizer that we are using.
|
|
scheduler:
|
|
The scheduler that we are using.
|
|
Returns:
|
|
Return a dict containing previously saved training info.
|
|
"""
|
|
if params.start_batch > 0:
|
|
filename = params.exp_dir / f"checkpoint-{params.start_batch}.pt"
|
|
elif params.start_epoch > 1:
|
|
filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt"
|
|
else:
|
|
return None
|
|
|
|
assert filename.is_file(), f"{filename} does not exist!"
|
|
|
|
if isinstance(model, DDP):
|
|
raise ValueError("load_checkpoint before DDP")
|
|
|
|
saved_params = load_checkpoint(
|
|
filename,
|
|
model=model,
|
|
model_avg=model_avg,
|
|
optimizer=optimizer,
|
|
scheduler=scheduler,
|
|
)
|
|
|
|
keys = [
|
|
"best_train_epoch",
|
|
"best_valid_epoch",
|
|
"batch_idx_train",
|
|
"best_train_loss",
|
|
"best_valid_loss",
|
|
]
|
|
for k in keys:
|
|
params[k] = saved_params[k]
|
|
|
|
if params.start_batch > 0:
|
|
if "cur_epoch" in saved_params:
|
|
params["start_epoch"] = saved_params["cur_epoch"]
|
|
|
|
return saved_params
|
|
|
|
|
|
def save_checkpoint(
|
|
params: AttributeDict,
|
|
model: Union[nn.Module, DDP],
|
|
model_avg: Optional[nn.Module] = None,
|
|
optimizer: Optional[torch.optim.Optimizer] = None,
|
|
scheduler: Optional[LRSchedulerType] = None,
|
|
sampler: Optional[CutSampler] = None,
|
|
scaler: Optional[GradScaler] = None,
|
|
rank: int = 0,
|
|
) -> None:
|
|
"""Save model, optimizer, scheduler and training stats to file.
|
|
|
|
Args:
|
|
params:
|
|
It is returned by :func:`get_params`.
|
|
model:
|
|
The training model.
|
|
model_avg:
|
|
The stored model averaged from the start of training.
|
|
optimizer:
|
|
The optimizer used in the training.
|
|
sampler:
|
|
The sampler for the training dataset.
|
|
scaler:
|
|
The scaler used for mix precision training.
|
|
"""
|
|
if rank != 0:
|
|
return
|
|
filename = params.exp_dir / f"epoch-{params.cur_epoch}.pt"
|
|
save_checkpoint_impl(
|
|
filename=filename,
|
|
model=model,
|
|
model_avg=model_avg,
|
|
params=params,
|
|
optimizer=optimizer,
|
|
scheduler=scheduler,
|
|
sampler=sampler,
|
|
scaler=scaler,
|
|
rank=rank,
|
|
)
|
|
|
|
if params.best_train_epoch == params.cur_epoch:
|
|
best_train_filename = params.exp_dir / "best-train-loss.pt"
|
|
copyfile(src=filename, dst=best_train_filename)
|
|
|
|
if params.best_valid_epoch == params.cur_epoch:
|
|
best_valid_filename = params.exp_dir / "best-valid-loss.pt"
|
|
copyfile(src=filename, dst=best_valid_filename)
|
|
|
|
|
|
def prepare_input(batch: dict, device: torch.device):
|
|
"""Parse batch data"""
|
|
text_inputs = batch["text"]
|
|
# texts.extend(convert_char_to_pinyin([text], polyphone=true))
|
|
text_inputs = convert_char_to_pinyin(text_inputs, polyphone=True)
|
|
|
|
mel_spec = batch["features"]
|
|
mel_lengths = batch["features_lens"]
|
|
return text_inputs, mel_spec.to(device), mel_lengths.to(device)
|
|
|
|
|
|
def compute_loss(
|
|
params: AttributeDict,
|
|
model: Union[nn.Module, DDP],
|
|
tokenizer,
|
|
batch: dict,
|
|
is_training: bool,
|
|
) -> Tuple[Tensor, MetricsTracker]:
|
|
"""
|
|
Compute transducer loss given the model and its inputs.
|
|
|
|
Args:
|
|
params:
|
|
Parameters for training. See :func:`get_params`.
|
|
model:
|
|
The model for training. It is an instance of Zipformer in our case.
|
|
batch:
|
|
A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()`
|
|
for the content in it.
|
|
is_training:
|
|
True for training. False for validation. When it is True, this
|
|
function enables autograd during computation; when it is False, it
|
|
disables autograd.
|
|
warmup: a floating point value which increases throughout training;
|
|
values >= 1.0 are fully warmed up and have all modules present.
|
|
"""
|
|
device = model.device if isinstance(model, DDP) else next(model.parameters()).device
|
|
(text_inputs, mel_spec, mel_lengths) = prepare_input(batch, device=device)
|
|
# at entry, TextTokens is (N, P)
|
|
|
|
with torch.set_grad_enabled(is_training):
|
|
loss, cond, pred = model(mel_spec, text=text_inputs, lens=mel_lengths)
|
|
assert loss.requires_grad == is_training
|
|
|
|
info = MetricsTracker()
|
|
with warnings.catch_warnings():
|
|
warnings.simplefilter("ignore")
|
|
info["samples"] = mel_lengths.size(0)
|
|
|
|
info["loss"] = loss.detach().cpu().item() * info["samples"]
|
|
|
|
return loss, info
|
|
|
|
|
|
def compute_validation_loss(
|
|
params: AttributeDict,
|
|
model: Union[nn.Module, DDP],
|
|
tokenizer,
|
|
valid_dl: torch.utils.data.DataLoader,
|
|
world_size: int = 1,
|
|
) -> MetricsTracker:
|
|
"""Run the validation process."""
|
|
tot_loss = MetricsTracker()
|
|
|
|
for batch_idx, batch in enumerate(valid_dl):
|
|
loss, loss_info = compute_loss(
|
|
params=params,
|
|
model=model,
|
|
tokenizer=tokenizer,
|
|
batch=batch,
|
|
is_training=False,
|
|
)
|
|
assert loss.requires_grad is False
|
|
tot_loss = tot_loss + loss_info
|
|
if world_size > 1:
|
|
tot_loss.reduce(loss.device)
|
|
loss_value = tot_loss["loss"] / tot_loss["samples"]
|
|
if loss_value < params.best_valid_loss:
|
|
params.best_valid_epoch = params.cur_epoch
|
|
params.best_valid_loss = loss_value
|
|
|
|
return tot_loss
|
|
|
|
|
|
def train_one_epoch(
|
|
params: AttributeDict,
|
|
model: Union[nn.Module, DDP],
|
|
tokenizer,
|
|
optimizer: torch.optim.Optimizer,
|
|
scheduler: LRSchedulerType,
|
|
train_dl: torch.utils.data.DataLoader,
|
|
valid_dl: torch.utils.data.DataLoader,
|
|
rng: random.Random,
|
|
scaler: GradScaler,
|
|
model_avg: Optional[nn.Module] = None,
|
|
tb_writer: Optional[SummaryWriter] = None,
|
|
world_size: int = 1,
|
|
rank: int = 0,
|
|
) -> None:
|
|
"""Train the model for one epoch.
|
|
|
|
The training loss from the mean of all frames is saved in
|
|
`params.train_loss`. It runs the validation process every
|
|
`params.valid_interval` batches.
|
|
|
|
Args:
|
|
params:
|
|
It is returned by :func:`get_params`.
|
|
model:
|
|
The model for training.
|
|
optimizer:
|
|
The optimizer we are using.
|
|
scheduler:
|
|
The learning rate scheduler, we call step() every step.
|
|
train_dl:
|
|
Dataloader for the training dataset.
|
|
valid_dl:
|
|
Dataloader for the validation dataset.
|
|
rng:
|
|
Random for selecting.
|
|
scaler:
|
|
The scaler used for mix precision training.
|
|
model_avg:
|
|
The stored model averaged from the start of training.
|
|
tb_writer:
|
|
Writer to write log messages to tensorboard.
|
|
world_size:
|
|
Number of nodes in DDP training. If it is 1, DDP is disabled.
|
|
rank:
|
|
The rank of the node in DDP training. If no DDP is used, it should
|
|
be set to 0.
|
|
"""
|
|
model.train()
|
|
tot_loss = MetricsTracker()
|
|
iter_dl = iter(train_dl)
|
|
|
|
dtype, enabled = torch.float32, False
|
|
if params.dtype in ["bfloat16", "bf16"]:
|
|
dtype, enabled = torch.bfloat16, True
|
|
elif params.dtype in ["float16", "fp16"]:
|
|
dtype, enabled = torch.float16, True
|
|
|
|
batch_idx = 0
|
|
while True:
|
|
try:
|
|
batch = next(iter_dl)
|
|
except StopIteration:
|
|
logging.info("Reaches end of dataloader.")
|
|
break
|
|
|
|
batch_idx += 1
|
|
|
|
params.batch_idx_train += 1
|
|
batch_size = len(batch["text"])
|
|
|
|
try:
|
|
with torch.amp.autocast("cuda", dtype=dtype, enabled=enabled):
|
|
loss, loss_info = compute_loss(
|
|
params=params,
|
|
model=model,
|
|
tokenizer=tokenizer,
|
|
batch=batch,
|
|
is_training=True,
|
|
)
|
|
|
|
# summary stats
|
|
tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info * (
|
|
1 / params.reset_interval
|
|
)
|
|
|
|
# NOTE: We use reduction==sum and loss is computed over utterances
|
|
# in the batch and there is no normalization to it so far.
|
|
|
|
scaler.scale(loss).backward()
|
|
if params.batch_idx_train >= params.accumulate_grad_steps:
|
|
if params.batch_idx_train % params.accumulate_grad_steps == 0:
|
|
|
|
# Unscales the gradients of optimizer's assigned params in-place
|
|
scaler.unscale_(optimizer)
|
|
# Since the gradients of optimizer's assigned params are unscaled, clips as usual:
|
|
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
|
|
|
|
scaler.step(optimizer)
|
|
scaler.update()
|
|
optimizer.zero_grad()
|
|
# loss.backward()
|
|
# optimizer.step()
|
|
|
|
for k in range(params.accumulate_grad_steps):
|
|
scheduler.step()
|
|
|
|
set_batch_count(model, params.batch_idx_train)
|
|
except: # noqa
|
|
display_and_save_batch(batch, params=params)
|
|
raise
|
|
|
|
if params.average_period > 0:
|
|
if (
|
|
params.batch_idx_train > 0
|
|
and params.batch_idx_train % params.average_period == 0
|
|
):
|
|
# Perform Operation in rank 0
|
|
if rank == 0:
|
|
update_averaged_model(
|
|
params=params,
|
|
model_cur=model,
|
|
model_avg=model_avg,
|
|
)
|
|
|
|
if (
|
|
params.batch_idx_train > 0
|
|
and params.batch_idx_train % params.save_every_n == 0
|
|
):
|
|
# Perform Operation in rank 0
|
|
if rank == 0:
|
|
save_checkpoint_with_global_batch_idx(
|
|
out_dir=params.exp_dir,
|
|
global_batch_idx=params.batch_idx_train,
|
|
model=model,
|
|
model_avg=model_avg,
|
|
params=params,
|
|
optimizer=optimizer,
|
|
scheduler=scheduler,
|
|
sampler=train_dl.sampler,
|
|
scaler=scaler,
|
|
rank=rank,
|
|
)
|
|
remove_checkpoints(
|
|
out_dir=params.exp_dir,
|
|
topk=params.keep_last_k,
|
|
rank=rank,
|
|
)
|
|
|
|
if batch_idx % 100 == 0 and params.dtype in ["float16", "fp16"]:
|
|
# If the grad scale was less than 1, try increasing it. The _growth_interval
|
|
# of the grad scaler is configurable, but we can't configure it to have different
|
|
# behavior depending on the current grad scale.
|
|
cur_grad_scale = scaler._scale.item()
|
|
if cur_grad_scale < 1.0 or (cur_grad_scale < 8.0 and batch_idx % 400 == 0):
|
|
scaler.update(cur_grad_scale * 2.0)
|
|
|
|
if cur_grad_scale < 0.01:
|
|
logging.warning(f"Grad scale is small: {cur_grad_scale}")
|
|
if cur_grad_scale < 1.0e-05:
|
|
raise RuntimeError(
|
|
f"grad_scale is too small, exiting: {cur_grad_scale}"
|
|
)
|
|
|
|
if batch_idx % params.log_interval == 0:
|
|
cur_lr = scheduler.get_last_lr()[0]
|
|
cur_grad_scale = (
|
|
scaler._scale.item() if params.dtype in ["float16", "fp16"] else 1.0
|
|
)
|
|
|
|
logging.info(
|
|
f"Epoch {params.cur_epoch}, "
|
|
f"batch {batch_idx}, train_loss[{loss_info}], "
|
|
f"batch size: {batch_size}, "
|
|
f"lr: {cur_lr:.2e}"
|
|
+ (
|
|
f", grad_scale: {cur_grad_scale}"
|
|
if params.dtype in ["float16", "fp16"]
|
|
else ""
|
|
)
|
|
)
|
|
|
|
if tb_writer is not None:
|
|
tb_writer.add_scalar(
|
|
"train/learning_rate", cur_lr, params.batch_idx_train
|
|
)
|
|
loss_info.write_summary(
|
|
tb_writer,
|
|
"train/current_",
|
|
params.batch_idx_train,
|
|
)
|
|
tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train)
|
|
tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train)
|
|
if params.dtype in ["float16", "fp16"]:
|
|
tb_writer.add_scalar(
|
|
"train/grad_scale",
|
|
cur_grad_scale,
|
|
params.batch_idx_train,
|
|
)
|
|
|
|
if params.batch_idx_train % params.valid_interval == 0:
|
|
# Calculate validation loss in Rank 0
|
|
model.eval()
|
|
logging.info("Computing validation loss")
|
|
with torch.amp.autocast("cuda", dtype=dtype):
|
|
valid_info = compute_validation_loss(
|
|
params=params,
|
|
model=model,
|
|
tokenizer=tokenizer,
|
|
valid_dl=valid_dl,
|
|
world_size=world_size,
|
|
)
|
|
logging.info(f"Epoch {params.cur_epoch}, validation: {valid_info}")
|
|
logging.info(
|
|
f"Maximum memory allocated so far is {torch.cuda.max_memory_allocated()//1000000}MB"
|
|
)
|
|
|
|
if tb_writer is not None:
|
|
valid_info.write_summary(
|
|
tb_writer, "train/valid_", params.batch_idx_train
|
|
)
|
|
|
|
model.train()
|
|
|
|
loss_value = tot_loss["loss"] / tot_loss["samples"]
|
|
params.train_loss = loss_value
|
|
if params.train_loss < params.best_train_loss:
|
|
params.best_train_epoch = params.cur_epoch
|
|
params.best_train_loss = params.train_loss
|
|
|
|
|
|
def filter_short_and_long_utterances(
|
|
cuts: CutSet, min_duration: float, max_duration: float
|
|
) -> CutSet:
|
|
def remove_short_and_long_utt(c: Cut):
|
|
# Keep only utterances with duration between 0.6 second and 20 seconds
|
|
if c.duration < min_duration or c.duration > max_duration:
|
|
# logging.warning(
|
|
# f"Exclude cut with ID {c.id} from training. Duration: {c.duration}"
|
|
# )
|
|
return False
|
|
return True
|
|
|
|
cuts = cuts.filter(remove_short_and_long_utt)
|
|
|
|
return cuts
|
|
|
|
|
|
def run(rank, world_size, args):
|
|
"""
|
|
Args:
|
|
rank:
|
|
It is a value between 0 and `world_size-1`, which is
|
|
passed automatically by `mp.spawn()` in :func:`main`.
|
|
The node with rank 0 is responsible for saving checkpoint.
|
|
world_size:
|
|
Number of GPUs for DDP training.
|
|
args:
|
|
The return value of get_parser().parse_args()
|
|
"""
|
|
params = get_params()
|
|
params.update(vars(args))
|
|
|
|
fix_random_seed(params.seed)
|
|
rng = random.Random(params.seed)
|
|
if world_size > 1:
|
|
setup_dist(rank, world_size, params.master_port)
|
|
|
|
setup_logger(f"{params.exp_dir}/log/log-train")
|
|
logging.info("Training started")
|
|
|
|
if args.tensorboard and rank == 0:
|
|
tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard")
|
|
else:
|
|
tb_writer = None
|
|
|
|
device = torch.device("cpu")
|
|
if torch.cuda.is_available():
|
|
device = torch.device("cuda", rank)
|
|
# https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
|
|
torch.backends.cudnn.allow_tf32 = True
|
|
torch.backends.cuda.matmul.allow_tf32 = True
|
|
|
|
logging.info(f"Device: {device}")
|
|
tokenizer = get_tokenizer(params.tokens)
|
|
logging.info(params)
|
|
|
|
logging.info("About to create model")
|
|
|
|
model = get_model(params)
|
|
|
|
if params.pretrained_model_path:
|
|
checkpoint = torch.load(params.pretrained_model_path, map_location="cpu")
|
|
if "ema_model_state_dict" in checkpoint or "model_state_dict" in checkpoint:
|
|
model = load_F5_TTS_pretrained_checkpoint(
|
|
model, params.pretrained_model_path
|
|
)
|
|
else:
|
|
_ = load_checkpoint(
|
|
params.pretrained_model_path,
|
|
model=model,
|
|
)
|
|
|
|
model = model.to(device)
|
|
|
|
with open(f"{params.exp_dir}/model.txt", "w") as f:
|
|
print(model)
|
|
print(model, file=f)
|
|
|
|
num_param = sum([p.numel() for p in model.parameters()])
|
|
logging.info(f"Number of model parameters: {num_param}")
|
|
|
|
assert params.save_every_n >= params.average_period
|
|
model_avg: Optional[nn.Module] = None
|
|
if rank == 0 and params.average_period > 0:
|
|
# model_avg is only used with rank 0
|
|
model_avg = copy.deepcopy(model).to(torch.float64)
|
|
|
|
assert params.start_epoch > 0, params.start_epoch
|
|
|
|
checkpoints = load_checkpoint_if_available(
|
|
params=params, model=model, model_avg=model_avg
|
|
)
|
|
|
|
model.to(device)
|
|
if world_size > 1:
|
|
logging.info("Using DDP")
|
|
model = DDP(model, device_ids=[rank], find_unused_parameters=False)
|
|
|
|
model_parameters = model.parameters()
|
|
|
|
optimizer = torch.optim.AdamW(
|
|
model_parameters,
|
|
lr=params.base_lr,
|
|
betas=(0.9, 0.95),
|
|
weight_decay=1e-2,
|
|
eps=1e-8,
|
|
)
|
|
|
|
warmup_scheduler = LinearLR(
|
|
optimizer, start_factor=1e-8, end_factor=1.0, total_iters=params.warmup_steps
|
|
)
|
|
decay_scheduler = LinearLR(
|
|
optimizer, start_factor=1.0, end_factor=1e-8, total_iters=params.decay_steps
|
|
)
|
|
scheduler = SequentialLR(
|
|
optimizer,
|
|
schedulers=[warmup_scheduler, decay_scheduler],
|
|
milestones=[params.warmup_steps],
|
|
)
|
|
|
|
optimizer.zero_grad()
|
|
|
|
if checkpoints and "optimizer" in checkpoints:
|
|
logging.info("Loading optimizer state dict")
|
|
optimizer.load_state_dict(checkpoints["optimizer"])
|
|
|
|
if (
|
|
checkpoints
|
|
and "scheduler" in checkpoints
|
|
and checkpoints["scheduler"] is not None
|
|
):
|
|
logging.info("Loading scheduler state dict")
|
|
scheduler.load_state_dict(checkpoints["scheduler"])
|
|
|
|
if params.inf_check:
|
|
register_inf_check_hooks(model)
|
|
|
|
if params.start_batch > 0 and checkpoints and "sampler" in checkpoints:
|
|
sampler_state_dict = checkpoints["sampler"]
|
|
else:
|
|
sampler_state_dict = None
|
|
|
|
dataset = TtsDataModule(args)
|
|
train_cuts = dataset.train_cuts()
|
|
valid_cuts = dataset.valid_cuts()
|
|
|
|
train_cuts = filter_short_and_long_utterances(
|
|
train_cuts, params.filter_min_duration, params.filter_max_duration
|
|
)
|
|
valid_cuts = filter_short_and_long_utterances(
|
|
valid_cuts, params.filter_min_duration, params.filter_max_duration
|
|
)
|
|
|
|
train_dl = dataset.train_dataloaders(
|
|
train_cuts, sampler_state_dict=sampler_state_dict
|
|
)
|
|
valid_dl = dataset.valid_dataloaders(valid_cuts)
|
|
|
|
if params.oom_check:
|
|
scan_pessimistic_batches_for_oom(
|
|
model=model,
|
|
tokenizer=tokenizer,
|
|
train_dl=train_dl,
|
|
optimizer=optimizer,
|
|
params=params,
|
|
)
|
|
|
|
scaler = GradScaler(
|
|
"cuda", enabled=(params.dtype in ["fp16", "float16"]), init_scale=1.0
|
|
)
|
|
if checkpoints and "grad_scaler" in checkpoints:
|
|
logging.info("Loading grad scaler state dict")
|
|
scaler.load_state_dict(checkpoints["grad_scaler"])
|
|
|
|
for epoch in range(params.start_epoch, params.num_epochs + 1):
|
|
|
|
fix_random_seed(params.seed + epoch - 1)
|
|
train_dl.sampler.set_epoch(epoch - 1)
|
|
|
|
if tb_writer is not None:
|
|
tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train)
|
|
|
|
params.cur_epoch = epoch
|
|
|
|
train_one_epoch(
|
|
params=params,
|
|
model=model,
|
|
tokenizer=tokenizer,
|
|
model_avg=model_avg,
|
|
optimizer=optimizer,
|
|
scheduler=scheduler,
|
|
train_dl=train_dl,
|
|
valid_dl=valid_dl,
|
|
rng=rng,
|
|
scaler=scaler,
|
|
tb_writer=tb_writer,
|
|
world_size=world_size,
|
|
rank=rank,
|
|
)
|
|
|
|
save_checkpoint(
|
|
params=params,
|
|
model=model,
|
|
model_avg=model_avg,
|
|
optimizer=optimizer,
|
|
scheduler=scheduler,
|
|
sampler=train_dl.sampler,
|
|
scaler=scaler,
|
|
rank=rank,
|
|
)
|
|
|
|
logging.info("Done!")
|
|
|
|
if world_size > 1:
|
|
torch.distributed.barrier()
|
|
cleanup_dist()
|
|
|
|
|
|
def display_and_save_batch(
|
|
batch: dict,
|
|
params: AttributeDict,
|
|
) -> None:
|
|
"""Display the batch statistics and save the batch into disk.
|
|
|
|
Args:
|
|
batch:
|
|
A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()`
|
|
for the content in it.
|
|
params:
|
|
Parameters for training. See :func:`get_params`.
|
|
"""
|
|
from lhotse.utils import uuid4
|
|
|
|
filename = f"{params.exp_dir}/batch-{uuid4()}.pt"
|
|
logging.info(f"Saving batch to {filename}")
|
|
torch.save(batch, filename)
|
|
|
|
|
|
def scan_pessimistic_batches_for_oom(
|
|
model: Union[nn.Module, DDP],
|
|
tokenizer,
|
|
train_dl: torch.utils.data.DataLoader,
|
|
optimizer: torch.optim.Optimizer,
|
|
params: AttributeDict,
|
|
):
|
|
from lhotse.dataset import find_pessimistic_batches
|
|
|
|
logging.info(
|
|
"Sanity check -- see if any of the batches in epoch 1 would cause OOM."
|
|
)
|
|
batches, crit_values = find_pessimistic_batches(train_dl.sampler)
|
|
dtype = torch.float32
|
|
if params.dtype in ["bfloat16", "bf16"]:
|
|
dtype = torch.bfloat16
|
|
elif params.dtype in ["float16", "fp16"]:
|
|
dtype = torch.float16
|
|
|
|
for criterion, cuts in batches.items():
|
|
batch = train_dl.dataset[cuts]
|
|
print(batch.keys())
|
|
try:
|
|
with torch.amp.autocast("cuda", dtype=dtype):
|
|
loss, loss_info = compute_loss(
|
|
params=params,
|
|
model=model,
|
|
tokenizer=tokenizer,
|
|
batch=batch,
|
|
is_training=True,
|
|
)
|
|
loss.backward(retain_graph=True)
|
|
optimizer.zero_grad()
|
|
except Exception as e:
|
|
if "CUDA out of memory" in str(e):
|
|
logging.error(
|
|
"Your GPU ran out of memory with the current "
|
|
"max_duration setting. We recommend decreasing "
|
|
"max_duration and trying again.\n"
|
|
f"Failing criterion: {criterion} "
|
|
f"(={crit_values[criterion]}) ..."
|
|
)
|
|
display_and_save_batch(batch, params=params)
|
|
raise
|
|
logging.info(
|
|
f"Maximum memory allocated so far is {torch.cuda.max_memory_allocated()//1000000}MB"
|
|
)
|
|
|
|
|
|
def main():
|
|
parser = get_parser()
|
|
TtsDataModule.add_arguments(parser)
|
|
args = parser.parse_args()
|
|
|
|
world_size = args.world_size
|
|
assert world_size >= 1
|
|
if world_size > 1:
|
|
mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True)
|
|
else:
|
|
run(rank=0, world_size=1, args=args)
|
|
|
|
|
|
torch.set_num_threads(1)
|
|
torch.set_num_interop_threads(1)
|
|
|
|
if __name__ == "__main__":
|
|
main()
|