mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-10 18:42:19 +00:00
* Bug fix * Change subsamplling factor from 1 to 2 * Implement AttentionCombine as replacement for RandomCombine * Decrease random_prob from 0.5 to 0.333 * Add print statement * Apply single_prob mask, so sometimes we just get one layer as output. * Introduce feature mask per frame * Include changes from Liyong about padding conformer module. * Reduce single_prob from 0.5 to 0.25 * Reduce feature_mask_dropout_prob from 0.25 to 0.15. * Remove dropout from inside ConformerEncoderLayer, for adding to residuals * Increase feature_mask_dropout_prob from 0.15 to 0.2. * Swap random_prob and single_prob, to reduce prob of being randomized. * Decrease feature_mask_dropout_prob back from 0.2 to 0.15, i.e. revert the 43->48 change. * Randomize order of some modules * Bug fix * Stop backprop bug * Introduce a scale dependent on the masking value * Implement efficient layer dropout * Simplify the learned scaling factor on the modules * Compute valid loss on batch 0. * Make the scaling factors more global and the randomness of dropout more random * Bug fix * Introduce offset in layerdrop_scaleS * Remove final combination; implement layer drop that drops the final layers. * Bug fices * Fix bug RE self.training * Fix bug setting layerdrop mask * Fix eigs call * Add debug info * Remove warmup * Remove layer dropout and model-level warmup * Don't always apply the frame mask * Slight code cleanup/simplification * Various fixes, finish implementating frame masking * Remove debug info * Don't compute validation if printing diagnostics. * Apply layer bypass during warmup in a new way, including 2s and 4s of layers. * Update checkpoint.py to deal with int params * Revert initial_scale to previous values. * Remove the feature where it was bypassing groups of layers. * Implement layer dropout with probability 0.075 * Fix issue with warmup in test time * Add warmup schedule where dropout disappears from earlier layers first. * Have warmup that gradually removes dropout from layers; multiply initialization scales by 0.1. * Do dropout a different way * Fix bug in warmup * Remove debug print * Make the warmup mask per frame. * Implement layer dropout (in a relatively efficient way) * Decrease initial keep_prob to 0.25. * Make it start warming up from the very start, and increase warmup_batches to 6k * Change warmup schedule and increase warmup_batches from 4k to 6k * Make the bypass scale trainable. * Change the initial keep-prob back from 0.25 to 0.5 * Bug fix * Limit bypass scale to >= 0.1 * Revert "Change warmup schedule and increase warmup_batches from 4k to 6k" This reverts commit 86845bd5d859ceb6f83cd83f3719c3e6641de987. * Do warmup by dropping out whole layers. * Decrease frequency of logging variance_proportion * Make layerdrop different in different processes. * For speed, drop the same num layers per job. * Decrease initial_layerdrop_prob from 0.75 to 0.5 * Revert also the changes in scaled_adam_exp85 regarding warmup schedule * Remove unused code LearnedScale. * Reintroduce batching to the optimizer * Various fixes from debugging with nvtx, but removed the NVTX annotations. * Only apply ActivationBalancer with prob 0.25. * Fix s -> scaling for import. * Increase final layerdrop prob from 0.05 to 0.075 * Fix bug where fewer layers were dropped than should be; remove unnecesary print statement. * Fix bug in choosing layers to drop * Refactor RelPosMultiheadAttention to have 2nd forward function and introduce more modules in conformer encoder layer * Reduce final layerdrop_prob from 0.075 to 0.05. * Fix issue with diagnostics if stats is None * Remove persistent attention scores. * Make ActivationBalancer and MaxEig more efficient. * Cosmetic improvements * Change scale_factor_scale from 0.5 to 0.8 * Make the ActivationBalancer regress to the data mean, not zero, when enforcing abs constraint. * Remove unused config value * Fix bug when channel_dim < 0 * Fix bug when channel_dim < 0 * Simplify how the positional-embedding scores work in attention (thanks to Zengwei for this concept) * Revert dropout on attention scores to 0.0. * This should just be a cosmetic change, regularizing how we get the warmup times from the layers. * Reduce beta from 0.75 to 0.0. * Reduce stats period from 10 to 4. * Reworking of ActivationBalancer code to hopefully balance speed and effectiveness. * Add debug code for attention weihts and eigs * Remove debug statement * Add different debug info. * Penalize attention-weight entropies above a limit. * Remove debug statements * use larger delta but only penalize if small grad norm * Bug fixes; change debug freq * Change cutoff for small_grad_norm * Implement whitening of values in conformer. * Also whiten the keys in conformer. * Fix an issue with scaling of grad. * Decrease whitening limit from 2.0 to 1.1. * Fix debug stats. * Reorganize Whiten() code; configs are not the same as before. Also remove MaxEig for self_attn module * Bug fix RE float16 * Revert whitening_limit from 1.1 to 2.2. * Replace MaxEig with Whiten with limit=5.0, and move it to end of ConformerEncoderLayer * Change LR schedule to start off higher * Simplify the dropout mask, no non-dropped-out sequences * Make attention dims configurable, not embed_dim//2, trying 256. * Reduce attention_dim to 192; cherry-pick scaled_adam_exp130 which is linear_pos interacting with query * Use half the dim for values, vs. keys and queries. * Increase initial-lr from 0.04 to 0.05, plus changes for diagnostics * Cosmetic changes * Changes to avoid bug in backward hooks, affecting diagnostics. * Random clip attention scores to -5..5. * Add some random clamping in model.py * Add reflect=0.1 to invocations of random_clamp() * Remove in_balancer. * Revert model.py so there are no constraints on the output. * Implement randomized backprop for softmax. * Reduce min_abs from 1e-03 to 1e-04 * Add RandomGrad with min_abs=1.0e-04 * Use full precision to do softmax and store ans. * Fix bug in backprop of random_clamp() * Get the randomized backprop for softmax in autocast mode working. * Remove debug print * Reduce min_abs from 1.0e-04 to 5.0e-06 * Add hard limit of attention weights to +- 50 * Use normal implementation of softmax. * Remove use of RandomGrad * Remove the use of random_clamp in conformer.py. * Reduce the limit on attention weights from 50 to 25. * Reduce min_prob of ActivationBalancer from 0.1 to 0.05. * Penalize too large weights in softmax of AttentionDownsample() * Also apply limit on logit in SimpleCombiner * Increase limit on logit for SimpleCombiner to 25.0 * Add more diagnostics to debug gradient scale problems * Changes to grad scale logging; increase grad scale more frequently if less than one. * Add logging * Remove comparison diagnostics, which were not that useful. * Configuration changes: scores limit 5->10, min_prob 0.05->0.1, cur_grad_scale more aggressive increase * Reset optimizer state when we change loss function definition. * Make warmup period decrease scale on simple loss, leaving pruned loss scale constant. * Cosmetic change * Increase initial-lr from 0.05 to 0.06. * Increase initial-lr from 0.06 to 0.075 and decrease lr-epochs from 3.5 to 3. * Fixes to logging statements. * Introduce warmup schedule in optimizer * Increase grad_scale to Whiten module * Add inf check hooks * Renaming in optim.py; remove step() from scan_pessimistic_batches_for_oom in train.py * Change base lr to 0.1, also rename from initial lr in train.py * Adding activation balancers after simple_am_prob and simple_lm_prob * Reduce max_abs on am_balancer * Increase max_factor in final lm_balancer and am_balancer * Use penalize_abs_values_gt, not ActivationBalancer. * Trying to reduce grad_scale of Whiten() from 0.02 to 0.01. * Add hooks.py, had negleted to git add it. * don't do penalize_values_gt on simple_lm_proj and simple_am_proj; reduce --base-lr from 0.1 to 0.075 * Increase probs of activation balancer and make it decay slower. * Dont print out full non-finite tensor * Increase default max_factor for ActivationBalancer from 0.02 to 0.04; decrease max_abs in ConvolutionModule.deriv_balancer2 from 100.0 to 20.0 * reduce initial scale in GradScaler * Increase max_abs in ActivationBalancer of conv module from 20 to 50 * --base-lr0.075->0.5; --lr-epochs 3->3.5 * Revert 179->180 change, i.e. change max_abs for deriv_balancer2 back from 50.0 20.0 * Save some memory in the autograd of DoubleSwish. * Change the discretization of the sigmoid to be expectation preserving. * Fix randn to rand * Try a more exact way to round to uint8 that should prevent ever wrapping around to zero * Make it use float16 if in amp but use clamp to avoid wrapping error * Store only half precision output for softmax. * More memory efficient backprop for DoubleSwish. * Change to warmup schedule. * Changes to more accurately estimate OOM conditions * Reduce cutoff from 100 to 5 for estimating OOM with warmup * Make 20 the limit for warmup_count * Cast to float16 in DoubleSwish forward * Hopefully make penalize_abs_values_gt more memory efficient. * Add logging about memory used. * Change scalar_max in optim.py from 2.0 to 5.0 * Regularize how we apply the min and max to the eps of BasicNorm * Fix clamping of bypass scale; remove a couple unused variables. * Increase floor on bypass_scale from 0.1 to 0.2. * Increase bypass_scale from 0.2 to 0.4. * Increase bypass_scale min from 0.4 to 0.5 * Rename conformer.py to zipformer.py * Rename Conformer to Zipformer * Update decode.py by copying from pruned_transducer_stateless5 and changing directory name * Remove some unused variables. * Fix clamping of epsilon * Refactor zipformer for more flexibility so we can change number of encoder layers. * Have a 3rd encoder, at downsampling factor of 8. * Refactor how the downsampling is done so that it happens later, but the 1st encoder stack still operates after a subsampling of 2. * Fix bug RE seq lengths * Have 4 encoder stacks * Have 6 different encoder stacks, U-shaped network. * Reduce dim of linear positional encoding in attention layers. * Reduce min of bypass_scale from 0.5 to 0.3, and make it not applied in test mode. * Tuning change to num encoder layers, inspired by relative param importance. * Make decoder group size equal to 4. * Add skip connections as in normal U-net * Avoid falling off the loop for weird inputs * Apply layer-skip dropout prob * Have warmup schedule for layer-skipping * Rework how warmup count is produced; should not affect results. * Add warmup schedule for zipformer encoder layer, from 1.0 -> 0.2. * Reduce initial clamp_min for bypass_scale from 1.0 to 0.5. * Restore the changes from scaled_adam_219 and scaled_adam_exp220, accidentally lost, re layer skipping * Change to schedule of bypass_scale min: make it larger, decrease slower. * Change schedule after initial loss not promising * Implement pooling module, add it after initial feedforward. * Bug fix * Introduce dropout rate to dynamic submodules of conformer. * Introduce minimum probs in the SimpleCombiner * Add bias in weight module * Remove dynamic weights in SimpleCombine * Remove the 5th of 6 encoder stacks * Fix some typos * small fixes * small fixes * Copy files * Update decode.py * Add changes from the master * Add changes from the master * update results * Add CI * Small fixes * Small fixes Co-authored-by: Daniel Povey <dpovey@gmail.com>
864 lines
27 KiB
Python
Executable File
864 lines
27 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
#
|
|
# Copyright 2021-2022 Xiaomi Corporation (Author: Fangjun Kuang,
|
|
# Zengwei Yao)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
Usage:
|
|
(1) greedy search
|
|
./pruned_transducer_stateless8/decode.py \
|
|
--epoch 28 \
|
|
--avg 15 \
|
|
--exp-dir ./pruned_transducer_stateless8/exp \
|
|
--max-duration 600 \
|
|
--decoding-method greedy_search
|
|
|
|
(2) beam search (not recommended)
|
|
./pruned_transducer_stateless8/decode.py \
|
|
--epoch 28 \
|
|
--avg 15 \
|
|
--exp-dir ./pruned_transducer_stateless8/exp \
|
|
--max-duration 600 \
|
|
--decoding-method beam_search \
|
|
--beam-size 4
|
|
|
|
(3) modified beam search
|
|
./pruned_transducer_stateless8/decode.py \
|
|
--epoch 28 \
|
|
--avg 15 \
|
|
--exp-dir ./pruned_transducer_stateless8/exp \
|
|
--max-duration 600 \
|
|
--decoding-method modified_beam_search \
|
|
--beam-size 4
|
|
|
|
(4) fast beam search (one best)
|
|
./pruned_transducer_stateless8/decode.py \
|
|
--epoch 28 \
|
|
--avg 15 \
|
|
--exp-dir ./pruned_transducer_stateless8/exp \
|
|
--max-duration 600 \
|
|
--decoding-method fast_beam_search \
|
|
--beam 20.0 \
|
|
--max-contexts 8 \
|
|
--max-states 64
|
|
|
|
(5) fast beam search (nbest)
|
|
./pruned_transducer_stateless8/decode.py \
|
|
--epoch 28 \
|
|
--avg 15 \
|
|
--exp-dir ./pruned_transducer_stateless8/exp \
|
|
--max-duration 600 \
|
|
--decoding-method fast_beam_search_nbest \
|
|
--beam 20.0 \
|
|
--max-contexts 8 \
|
|
--max-states 64 \
|
|
--num-paths 200 \
|
|
--nbest-scale 0.5
|
|
|
|
(6) fast beam search (nbest oracle WER)
|
|
./pruned_transducer_stateless8/decode.py \
|
|
--epoch 28 \
|
|
--avg 15 \
|
|
--exp-dir ./pruned_transducer_stateless8/exp \
|
|
--max-duration 600 \
|
|
--decoding-method fast_beam_search_nbest_oracle \
|
|
--beam 20.0 \
|
|
--max-contexts 8 \
|
|
--max-states 64 \
|
|
--num-paths 200 \
|
|
--nbest-scale 0.5
|
|
|
|
(7) fast beam search (with LG)
|
|
./pruned_transducer_stateless8/decode.py \
|
|
--epoch 28 \
|
|
--avg 15 \
|
|
--exp-dir ./pruned_transducer_stateless8/exp \
|
|
--max-duration 600 \
|
|
--decoding-method fast_beam_search_nbest_LG \
|
|
--beam 20.0 \
|
|
--max-contexts 8 \
|
|
--max-states 64
|
|
"""
|
|
|
|
|
|
import argparse
|
|
import logging
|
|
import math
|
|
from collections import defaultdict
|
|
from pathlib import Path
|
|
from typing import Dict, List, Optional, Tuple
|
|
|
|
import k2
|
|
import sentencepiece as spm
|
|
import torch
|
|
import torch.nn as nn
|
|
from asr_datamodule import AsrDataModule
|
|
from beam_search import (
|
|
beam_search,
|
|
fast_beam_search_nbest,
|
|
fast_beam_search_nbest_LG,
|
|
fast_beam_search_nbest_oracle,
|
|
fast_beam_search_one_best,
|
|
greedy_search,
|
|
greedy_search_batch,
|
|
modified_beam_search,
|
|
)
|
|
from librispeech import LibriSpeech
|
|
from train import add_model_arguments, get_params, get_transducer_model
|
|
|
|
from icefall.checkpoint import (
|
|
average_checkpoints,
|
|
average_checkpoints_with_averaged_model,
|
|
find_checkpoints,
|
|
load_checkpoint,
|
|
)
|
|
from icefall.lexicon import Lexicon
|
|
from icefall.utils import (
|
|
AttributeDict,
|
|
setup_logger,
|
|
store_transcripts,
|
|
str2bool,
|
|
write_error_stats,
|
|
)
|
|
|
|
LOG_EPS = math.log(1e-10)
|
|
|
|
|
|
def get_parser():
|
|
parser = argparse.ArgumentParser(
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--epoch",
|
|
type=int,
|
|
default=30,
|
|
help="""It specifies the checkpoint to use for decoding.
|
|
Note: Epoch counts from 1.
|
|
You can specify --avg to use more checkpoints for model averaging.""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--iter",
|
|
type=int,
|
|
default=0,
|
|
help="""If positive, --epoch is ignored and it
|
|
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
|
You can specify --avg to use more checkpoints for model averaging.
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--avg",
|
|
type=int,
|
|
default=9,
|
|
help="Number of checkpoints to average. Automatically select "
|
|
"consecutive checkpoints before the checkpoint specified by "
|
|
"'--epoch' and '--iter'",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--use-averaged-model",
|
|
type=str2bool,
|
|
default=True,
|
|
help="Whether to load averaged model. Currently it only supports "
|
|
"using --epoch. If True, it would decode with the averaged model "
|
|
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
|
"Actually only the models with epoch number of `epoch-avg` and "
|
|
"`epoch` are loaded for averaging. ",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--exp-dir",
|
|
type=str,
|
|
default="pruned_transducer_stateless8/exp",
|
|
help="The experiment dir",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--bpe-model",
|
|
type=str,
|
|
default="data/lang_bpe_500/bpe.model",
|
|
help="Path to the BPE model",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--lang-dir",
|
|
type=Path,
|
|
default="data/lang_bpe_500",
|
|
help="The lang dir containing word table and LG graph",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--decoding-method",
|
|
type=str,
|
|
default="greedy_search",
|
|
help="""Possible values are:
|
|
- greedy_search
|
|
- beam_search
|
|
- modified_beam_search
|
|
- fast_beam_search
|
|
- fast_beam_search_nbest
|
|
- fast_beam_search_nbest_oracle
|
|
- fast_beam_search_nbest_LG
|
|
If you use fast_beam_search_nbest_LG, you have to specify
|
|
`--lang-dir`, which should contain `LG.pt`.
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--beam-size",
|
|
type=int,
|
|
default=4,
|
|
help="""An integer indicating how many candidates we will keep for each
|
|
frame. Used only when --decoding-method is beam_search or
|
|
modified_beam_search.""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--beam",
|
|
type=float,
|
|
default=20.0,
|
|
help="""A floating point value to calculate the cutoff score during beam
|
|
search (i.e., `cutoff = max-score - beam`), which is the same as the
|
|
`beam` in Kaldi.
|
|
Used only when --decoding-method is fast_beam_search,
|
|
fast_beam_search_nbest, fast_beam_search_nbest_LG,
|
|
and fast_beam_search_nbest_oracle
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--ngram-lm-scale",
|
|
type=float,
|
|
default=0.01,
|
|
help="""
|
|
Used only when --decoding_method is fast_beam_search_nbest_LG.
|
|
It specifies the scale for n-gram LM scores.
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--max-contexts",
|
|
type=int,
|
|
default=8,
|
|
help="""Used only when --decoding-method is
|
|
fast_beam_search, fast_beam_search_nbest, fast_beam_search_nbest_LG,
|
|
and fast_beam_search_nbest_oracle""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--max-states",
|
|
type=int,
|
|
default=64,
|
|
help="""Used only when --decoding-method is
|
|
fast_beam_search, fast_beam_search_nbest, fast_beam_search_nbest_LG,
|
|
and fast_beam_search_nbest_oracle""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--context-size",
|
|
type=int,
|
|
default=2,
|
|
help="The context size in the decoder. 1 means bigram; "
|
|
"2 means tri-gram",
|
|
)
|
|
parser.add_argument(
|
|
"--max-sym-per-frame",
|
|
type=int,
|
|
default=1,
|
|
help="""Maximum number of symbols per frame.
|
|
Used only when --decoding_method is greedy_search""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--num-paths",
|
|
type=int,
|
|
default=200,
|
|
help="""Number of paths for nbest decoding.
|
|
Used only when the decoding method is fast_beam_search_nbest,
|
|
fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--nbest-scale",
|
|
type=float,
|
|
default=0.5,
|
|
help="""Scale applied to lattice scores when computing nbest paths.
|
|
Used only when the decoding method is fast_beam_search_nbest,
|
|
fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--simulate-streaming",
|
|
type=str2bool,
|
|
default=False,
|
|
help="""Whether to simulate streaming in decoding, this is a good way to
|
|
test a streaming model.
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--decode-chunk-size",
|
|
type=int,
|
|
default=16,
|
|
help="The chunk size for decoding (in frames after subsampling)",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--left-context",
|
|
type=int,
|
|
default=64,
|
|
help="left context can be seen during decoding (in frames after subsampling)",
|
|
)
|
|
|
|
add_model_arguments(parser)
|
|
|
|
return parser
|
|
|
|
|
|
def decode_one_batch(
|
|
params: AttributeDict,
|
|
model: nn.Module,
|
|
sp: spm.SentencePieceProcessor,
|
|
batch: dict,
|
|
word_table: Optional[k2.SymbolTable] = None,
|
|
decoding_graph: Optional[k2.Fsa] = None,
|
|
) -> Dict[str, List[List[str]]]:
|
|
"""Decode one batch and return the result in a dict. The dict has the
|
|
following format:
|
|
|
|
- key: It indicates the setting used for decoding. For example,
|
|
if greedy_search is used, it would be "greedy_search"
|
|
If beam search with a beam size of 7 is used, it would be
|
|
"beam_7"
|
|
- value: It contains the decoding result. `len(value)` equals to
|
|
batch size. `value[i]` is the decoding result for the i-th
|
|
utterance in the given batch.
|
|
Args:
|
|
params:
|
|
It's the return value of :func:`get_params`.
|
|
model:
|
|
The neural model.
|
|
sp:
|
|
The BPE model.
|
|
batch:
|
|
It is the return value from iterating
|
|
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
|
|
for the format of the `batch`.
|
|
word_table:
|
|
The word symbol table.
|
|
decoding_graph:
|
|
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
|
only when --decoding_method is fast_beam_search, fast_beam_search_nbest,
|
|
fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG.
|
|
Returns:
|
|
Return the decoding result. See above description for the format of
|
|
the returned dict.
|
|
"""
|
|
device = next(model.parameters()).device
|
|
feature = batch["inputs"]
|
|
assert feature.ndim == 3
|
|
|
|
feature = feature.to(device)
|
|
# at entry, feature is (N, T, C)
|
|
|
|
supervisions = batch["supervisions"]
|
|
feature_lens = supervisions["num_frames"].to(device)
|
|
|
|
if params.simulate_streaming:
|
|
feature_lens += params.left_context
|
|
feature = torch.nn.functional.pad(
|
|
feature,
|
|
pad=(0, 0, 0, params.left_context),
|
|
value=LOG_EPS,
|
|
)
|
|
encoder_out, encoder_out_lens, _ = model.encoder.streaming_forward(
|
|
x=feature,
|
|
x_lens=feature_lens,
|
|
chunk_size=params.decode_chunk_size,
|
|
left_context=params.left_context,
|
|
simulate_streaming=True,
|
|
)
|
|
else:
|
|
encoder_out, encoder_out_lens = model.encoder(
|
|
x=feature, x_lens=feature_lens
|
|
)
|
|
|
|
hyps = []
|
|
|
|
if params.decoding_method == "fast_beam_search":
|
|
hyp_tokens = fast_beam_search_one_best(
|
|
model=model,
|
|
decoding_graph=decoding_graph,
|
|
encoder_out=encoder_out,
|
|
encoder_out_lens=encoder_out_lens,
|
|
beam=params.beam,
|
|
max_contexts=params.max_contexts,
|
|
max_states=params.max_states,
|
|
)
|
|
for hyp in sp.decode(hyp_tokens):
|
|
hyps.append(hyp.split())
|
|
elif params.decoding_method == "fast_beam_search_nbest_LG":
|
|
hyp_tokens = fast_beam_search_nbest_LG(
|
|
model=model,
|
|
decoding_graph=decoding_graph,
|
|
encoder_out=encoder_out,
|
|
encoder_out_lens=encoder_out_lens,
|
|
beam=params.beam,
|
|
max_contexts=params.max_contexts,
|
|
max_states=params.max_states,
|
|
num_paths=params.num_paths,
|
|
nbest_scale=params.nbest_scale,
|
|
)
|
|
for hyp in hyp_tokens:
|
|
hyps.append([word_table[i] for i in hyp])
|
|
elif params.decoding_method == "fast_beam_search_nbest":
|
|
hyp_tokens = fast_beam_search_nbest(
|
|
model=model,
|
|
decoding_graph=decoding_graph,
|
|
encoder_out=encoder_out,
|
|
encoder_out_lens=encoder_out_lens,
|
|
beam=params.beam,
|
|
max_contexts=params.max_contexts,
|
|
max_states=params.max_states,
|
|
num_paths=params.num_paths,
|
|
nbest_scale=params.nbest_scale,
|
|
)
|
|
for hyp in sp.decode(hyp_tokens):
|
|
hyps.append(hyp.split())
|
|
elif params.decoding_method == "fast_beam_search_nbest_oracle":
|
|
hyp_tokens = fast_beam_search_nbest_oracle(
|
|
model=model,
|
|
decoding_graph=decoding_graph,
|
|
encoder_out=encoder_out,
|
|
encoder_out_lens=encoder_out_lens,
|
|
beam=params.beam,
|
|
max_contexts=params.max_contexts,
|
|
max_states=params.max_states,
|
|
num_paths=params.num_paths,
|
|
ref_texts=sp.encode(supervisions["text"]),
|
|
nbest_scale=params.nbest_scale,
|
|
)
|
|
for hyp in sp.decode(hyp_tokens):
|
|
hyps.append(hyp.split())
|
|
elif (
|
|
params.decoding_method == "greedy_search"
|
|
and params.max_sym_per_frame == 1
|
|
):
|
|
hyp_tokens = greedy_search_batch(
|
|
model=model,
|
|
encoder_out=encoder_out,
|
|
encoder_out_lens=encoder_out_lens,
|
|
)
|
|
for hyp in sp.decode(hyp_tokens):
|
|
hyps.append(hyp.split())
|
|
elif params.decoding_method == "modified_beam_search":
|
|
hyp_tokens = modified_beam_search(
|
|
model=model,
|
|
encoder_out=encoder_out,
|
|
encoder_out_lens=encoder_out_lens,
|
|
beam=params.beam_size,
|
|
)
|
|
for hyp in sp.decode(hyp_tokens):
|
|
hyps.append(hyp.split())
|
|
else:
|
|
batch_size = encoder_out.size(0)
|
|
|
|
for i in range(batch_size):
|
|
# fmt: off
|
|
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
|
|
# fmt: on
|
|
if params.decoding_method == "greedy_search":
|
|
hyp = greedy_search(
|
|
model=model,
|
|
encoder_out=encoder_out_i,
|
|
max_sym_per_frame=params.max_sym_per_frame,
|
|
)
|
|
elif params.decoding_method == "beam_search":
|
|
hyp = beam_search(
|
|
model=model,
|
|
encoder_out=encoder_out_i,
|
|
beam=params.beam_size,
|
|
)
|
|
else:
|
|
raise ValueError(
|
|
f"Unsupported decoding method: {params.decoding_method}"
|
|
)
|
|
hyps.append(sp.decode(hyp).split())
|
|
|
|
if params.decoding_method == "greedy_search":
|
|
return {"greedy_search": hyps}
|
|
elif "fast_beam_search" in params.decoding_method:
|
|
key = f"beam_{params.beam}_"
|
|
key += f"max_contexts_{params.max_contexts}_"
|
|
key += f"max_states_{params.max_states}"
|
|
if "nbest" in params.decoding_method:
|
|
key += f"_num_paths_{params.num_paths}_"
|
|
key += f"nbest_scale_{params.nbest_scale}"
|
|
if "LG" in params.decoding_method:
|
|
key += f"_ngram_lm_scale_{params.ngram_lm_scale}"
|
|
|
|
return {key: hyps}
|
|
else:
|
|
return {f"beam_size_{params.beam_size}": hyps}
|
|
|
|
|
|
def decode_dataset(
|
|
dl: torch.utils.data.DataLoader,
|
|
params: AttributeDict,
|
|
model: nn.Module,
|
|
sp: spm.SentencePieceProcessor,
|
|
word_table: Optional[k2.SymbolTable] = None,
|
|
decoding_graph: Optional[k2.Fsa] = None,
|
|
) -> Dict[str, List[Tuple[str, List[str], List[str]]]]:
|
|
"""Decode dataset.
|
|
|
|
Args:
|
|
dl:
|
|
PyTorch's dataloader containing the dataset to decode.
|
|
params:
|
|
It is returned by :func:`get_params`.
|
|
model:
|
|
The neural model.
|
|
sp:
|
|
The BPE model.
|
|
word_table:
|
|
The word symbol table.
|
|
decoding_graph:
|
|
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
|
only when --decoding_method is fast_beam_search, fast_beam_search_nbest,
|
|
fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG.
|
|
Returns:
|
|
Return a dict, whose key may be "greedy_search" if greedy search
|
|
is used, or it may be "beam_7" if beam size of 7 is used.
|
|
Its value is a list of tuples. Each tuple contains two elements:
|
|
The first is the reference transcript, and the second is the
|
|
predicted result.
|
|
"""
|
|
num_cuts = 0
|
|
|
|
try:
|
|
num_batches = len(dl)
|
|
except TypeError:
|
|
num_batches = "?"
|
|
|
|
if params.decoding_method == "greedy_search":
|
|
log_interval = 50
|
|
else:
|
|
log_interval = 20
|
|
|
|
results = defaultdict(list)
|
|
for batch_idx, batch in enumerate(dl):
|
|
texts = batch["supervisions"]["text"]
|
|
cut_ids = [cut.id for cut in batch["supervisions"]["cut"]]
|
|
|
|
hyps_dict = decode_one_batch(
|
|
params=params,
|
|
model=model,
|
|
sp=sp,
|
|
decoding_graph=decoding_graph,
|
|
word_table=word_table,
|
|
batch=batch,
|
|
)
|
|
|
|
for name, hyps in hyps_dict.items():
|
|
this_batch = []
|
|
assert len(hyps) == len(texts)
|
|
for cut_id, hyp_words, ref_text in zip(cut_ids, hyps, texts):
|
|
ref_words = ref_text.split()
|
|
this_batch.append((cut_id, ref_words, hyp_words))
|
|
|
|
results[name].extend(this_batch)
|
|
|
|
num_cuts += len(texts)
|
|
|
|
if batch_idx % log_interval == 0:
|
|
batch_str = f"{batch_idx}/{num_batches}"
|
|
|
|
logging.info(
|
|
f"batch {batch_str}, cuts processed until now is {num_cuts}"
|
|
)
|
|
return results
|
|
|
|
|
|
def save_results(
|
|
params: AttributeDict,
|
|
test_set_name: str,
|
|
results_dict: Dict[str, List[Tuple[str, List[str], List[str]]]],
|
|
):
|
|
test_set_wers = dict()
|
|
for key, results in results_dict.items():
|
|
recog_path = (
|
|
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
|
|
)
|
|
results = sorted(results)
|
|
store_transcripts(filename=recog_path, texts=results)
|
|
logging.info(f"The transcripts are stored in {recog_path}")
|
|
|
|
# The following prints out WERs, per-word error statistics and aligned
|
|
# ref/hyp pairs.
|
|
errs_filename = (
|
|
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
|
|
)
|
|
with open(errs_filename, "w") as f:
|
|
wer = write_error_stats(
|
|
f, f"{test_set_name}-{key}", results, enable_log=True
|
|
)
|
|
test_set_wers[key] = wer
|
|
|
|
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
|
|
|
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
|
errs_info = (
|
|
params.res_dir
|
|
/ f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
|
|
)
|
|
with open(errs_info, "w") as f:
|
|
print("settings\tWER", file=f)
|
|
for key, val in test_set_wers:
|
|
print("{}\t{}".format(key, val), file=f)
|
|
|
|
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
|
|
note = "\tbest for {}".format(test_set_name)
|
|
for key, val in test_set_wers:
|
|
s += "{}\t{}{}\n".format(key, val, note)
|
|
note = ""
|
|
logging.info(s)
|
|
|
|
|
|
@torch.no_grad()
|
|
def main():
|
|
parser = get_parser()
|
|
AsrDataModule.add_arguments(parser)
|
|
args = parser.parse_args()
|
|
args.exp_dir = Path(args.exp_dir)
|
|
|
|
params = get_params()
|
|
params.update(vars(args))
|
|
|
|
assert params.decoding_method in (
|
|
"greedy_search",
|
|
"beam_search",
|
|
"fast_beam_search",
|
|
"fast_beam_search_nbest",
|
|
"fast_beam_search_nbest_LG",
|
|
"fast_beam_search_nbest_oracle",
|
|
"modified_beam_search",
|
|
)
|
|
params.res_dir = params.exp_dir / params.decoding_method
|
|
|
|
if params.iter > 0:
|
|
params.suffix = f"iter-{params.iter}-avg-{params.avg}"
|
|
else:
|
|
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
|
|
|
if params.simulate_streaming:
|
|
params.suffix += f"-streaming-chunk-size-{params.decode_chunk_size}"
|
|
params.suffix += f"-left-context-{params.left_context}"
|
|
|
|
if "fast_beam_search" in params.decoding_method:
|
|
params.suffix += f"-beam-{params.beam}"
|
|
params.suffix += f"-max-contexts-{params.max_contexts}"
|
|
params.suffix += f"-max-states-{params.max_states}"
|
|
if "nbest" in params.decoding_method:
|
|
params.suffix += f"-nbest-scale-{params.nbest_scale}"
|
|
params.suffix += f"-num-paths-{params.num_paths}"
|
|
if "LG" in params.decoding_method:
|
|
params.suffix += f"-ngram-lm-scale-{params.ngram_lm_scale}"
|
|
elif "beam_search" in params.decoding_method:
|
|
params.suffix += (
|
|
f"-{params.decoding_method}-beam-size-{params.beam_size}"
|
|
)
|
|
else:
|
|
params.suffix += f"-context-{params.context_size}"
|
|
params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
|
|
|
|
if params.use_averaged_model:
|
|
params.suffix += "-use-averaged-model"
|
|
|
|
setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
|
|
logging.info("Decoding started")
|
|
|
|
device = torch.device("cpu")
|
|
if torch.cuda.is_available():
|
|
device = torch.device("cuda", 0)
|
|
|
|
logging.info(f"Device: {device}")
|
|
|
|
sp = spm.SentencePieceProcessor()
|
|
sp.load(params.bpe_model)
|
|
|
|
# <blk> and <unk> are defined in local/train_bpe_model.py
|
|
params.blank_id = sp.piece_to_id("<blk>")
|
|
params.unk_id = sp.piece_to_id("<unk>")
|
|
params.vocab_size = sp.get_piece_size()
|
|
|
|
if params.simulate_streaming:
|
|
assert (
|
|
params.causal_convolution
|
|
), "Decoding in streaming requires causal convolution"
|
|
|
|
logging.info(params)
|
|
|
|
logging.info("About to create model")
|
|
model = get_transducer_model(params, enable_giga=False)
|
|
|
|
if not params.use_averaged_model:
|
|
if params.iter > 0:
|
|
filenames = find_checkpoints(
|
|
params.exp_dir, iteration=-params.iter
|
|
)[: params.avg]
|
|
if len(filenames) == 0:
|
|
raise ValueError(
|
|
f"No checkpoints found for"
|
|
f" --iter {params.iter}, --avg {params.avg}"
|
|
)
|
|
elif len(filenames) < params.avg:
|
|
raise ValueError(
|
|
f"Not enough checkpoints ({len(filenames)}) found for"
|
|
f" --iter {params.iter}, --avg {params.avg}"
|
|
)
|
|
logging.info(f"averaging {filenames}")
|
|
model.to(device)
|
|
model.load_state_dict(
|
|
average_checkpoints(filenames, device=device),
|
|
strict=False,
|
|
)
|
|
elif params.avg == 1:
|
|
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
|
else:
|
|
start = params.epoch - params.avg + 1
|
|
filenames = []
|
|
for i in range(start, params.epoch + 1):
|
|
if i >= 1:
|
|
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
|
logging.info(f"averaging {filenames}")
|
|
model.to(device)
|
|
model.load_state_dict(
|
|
average_checkpoints(filenames, device=device), strict=False
|
|
)
|
|
else:
|
|
if params.iter > 0:
|
|
filenames = find_checkpoints(
|
|
params.exp_dir, iteration=-params.iter
|
|
)[: params.avg + 1]
|
|
if len(filenames) == 0:
|
|
raise ValueError(
|
|
f"No checkpoints found for"
|
|
f" --iter {params.iter}, --avg {params.avg}"
|
|
)
|
|
elif len(filenames) < params.avg + 1:
|
|
raise ValueError(
|
|
f"Not enough checkpoints ({len(filenames)}) found for"
|
|
f" --iter {params.iter}, --avg {params.avg}"
|
|
)
|
|
filename_start = filenames[-1]
|
|
filename_end = filenames[0]
|
|
logging.info(
|
|
"Calculating the averaged model over iteration checkpoints"
|
|
f" from {filename_start} (excluded) to {filename_end}"
|
|
)
|
|
model.to(device)
|
|
model.load_state_dict(
|
|
average_checkpoints_with_averaged_model(
|
|
filename_start=filename_start,
|
|
filename_end=filename_end,
|
|
device=device,
|
|
),
|
|
strict=False,
|
|
)
|
|
else:
|
|
assert params.avg > 0, params.avg
|
|
start = params.epoch - params.avg
|
|
assert start >= 1, start
|
|
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
|
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
|
logging.info(
|
|
f"Calculating the averaged model over epoch range from "
|
|
f"{start} (excluded) to {params.epoch}"
|
|
)
|
|
model.to(device)
|
|
model.load_state_dict(
|
|
average_checkpoints_with_averaged_model(
|
|
filename_start=filename_start,
|
|
filename_end=filename_end,
|
|
device=device,
|
|
),
|
|
strict=False,
|
|
)
|
|
|
|
model.to(device)
|
|
model.eval()
|
|
|
|
if "fast_beam_search" in params.decoding_method:
|
|
if params.decoding_method == "fast_beam_search_nbest_LG":
|
|
lexicon = Lexicon(params.lang_dir)
|
|
word_table = lexicon.word_table
|
|
lg_filename = params.lang_dir / "LG.pt"
|
|
logging.info(f"Loading {lg_filename}")
|
|
decoding_graph = k2.Fsa.from_dict(
|
|
torch.load(lg_filename, map_location=device)
|
|
)
|
|
decoding_graph.scores *= params.ngram_lm_scale
|
|
else:
|
|
word_table = None
|
|
decoding_graph = k2.trivial_graph(
|
|
params.vocab_size - 1, device=device
|
|
)
|
|
else:
|
|
decoding_graph = None
|
|
word_table = None
|
|
|
|
num_param = sum([p.numel() for p in model.parameters()])
|
|
logging.info(f"Number of model parameters: {num_param}")
|
|
|
|
# we need cut ids to display recognition results.
|
|
args.return_cuts = True
|
|
asr_datamodule = AsrDataModule(args)
|
|
librispeech = LibriSpeech(manifest_dir=args.manifest_dir)
|
|
|
|
test_clean_cuts = librispeech.test_clean_cuts()
|
|
test_other_cuts = librispeech.test_other_cuts()
|
|
|
|
test_clean_dl = asr_datamodule.test_dataloaders(test_clean_cuts)
|
|
test_other_dl = asr_datamodule.test_dataloaders(test_other_cuts)
|
|
|
|
test_sets = ["test-clean", "test-other"]
|
|
test_dl = [test_clean_dl, test_other_dl]
|
|
|
|
for test_set, test_dl in zip(test_sets, test_dl):
|
|
results_dict = decode_dataset(
|
|
dl=test_dl,
|
|
params=params,
|
|
model=model,
|
|
sp=sp,
|
|
word_table=word_table,
|
|
decoding_graph=decoding_graph,
|
|
)
|
|
|
|
save_results(
|
|
params=params,
|
|
test_set_name=test_set,
|
|
results_dict=results_dict,
|
|
)
|
|
|
|
logging.info("Done!")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|