2023-01-11 08:46:03 +00:00

491 lines
52 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html class="writer-html5" lang="en" >
<head>
<meta charset="utf-8" /><meta name="generator" content="Docutils 0.17.1: http://docutils.sourceforge.net/" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>TDNN-LSTM-CTC &mdash; icefall 0.1 documentation</title>
<link rel="stylesheet" href="../../../_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="../../../_static/css/theme.css" type="text/css" />
<!--[if lt IE 9]>
<script src="../../../_static/js/html5shiv.min.js"></script>
<![endif]-->
<script data-url_root="../../../" id="documentation_options" src="../../../_static/documentation_options.js"></script>
<script src="../../../_static/jquery.js"></script>
<script src="../../../_static/underscore.js"></script>
<script src="../../../_static/_sphinx_javascript_frameworks_compat.js"></script>
<script src="../../../_static/doctools.js"></script>
<script src="../../../_static/sphinx_highlight.js"></script>
<script src="../../../_static/js/theme.js"></script>
<link rel="index" title="Index" href="../../../genindex.html" />
<link rel="search" title="Search" href="../../../search.html" />
<link rel="next" title="Conformer CTC" href="conformer_ctc.html" />
<link rel="prev" title="LibriSpeech" href="index.html" />
</head>
<body class="wy-body-for-nav">
<div class="wy-grid-for-nav">
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
<div class="wy-side-scroll">
<div class="wy-side-nav-search" >
<a href="../../../index.html" class="icon icon-home"> icefall
</a>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../../../search.html" method="get">
<input type="text" name="q" placeholder="Search docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div><div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="Navigation menu">
<p class="caption" role="heading"><span class="caption-text">Contents:</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../../installation/index.html">Installation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../faqs.html">Frequently Asked Questions (FAQs)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../model-export/index.html">Model export</a></li>
</ul>
<ul class="current">
<li class="toctree-l1 current"><a class="reference internal" href="../../index.html">Recipes</a><ul class="current">
<li class="toctree-l2 current"><a class="reference internal" href="../index.html">Non Streaming ASR</a><ul class="current">
<li class="toctree-l3"><a class="reference internal" href="../aishell/index.html">aishell</a></li>
<li class="toctree-l3 current"><a class="reference internal" href="index.html">LibriSpeech</a><ul class="current">
<li class="toctree-l4 current"><a class="current reference internal" href="#">TDNN-LSTM-CTC</a></li>
<li class="toctree-l4"><a class="reference internal" href="conformer_ctc.html">Conformer CTC</a></li>
<li class="toctree-l4"><a class="reference internal" href="pruned_transducer_stateless.html">Pruned transducer statelessX</a></li>
<li class="toctree-l4"><a class="reference internal" href="zipformer_mmi.html">Zipformer MMI</a></li>
<li class="toctree-l4"><a class="reference internal" href="zipformer_ctc_blankskip.html">Zipformer CTC Blank Skip</a></li>
<li class="toctree-l4"><a class="reference internal" href="distillation.html">Distillation with HuBERT</a></li>
</ul>
</li>
<li class="toctree-l3"><a class="reference internal" href="../timit/index.html">TIMIT</a></li>
<li class="toctree-l3"><a class="reference internal" href="../yesno/index.html">YesNo</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../Streaming-ASR/index.html">Streaming ASR</a></li>
</ul>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../../contributing/index.html">Contributing</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../huggingface/index.html">Huggingface</a></li>
</ul>
</div>
</div>
</nav>
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap"><nav class="wy-nav-top" aria-label="Mobile navigation menu" >
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
<a href="../../../index.html">icefall</a>
</nav>
<div class="wy-nav-content">
<div class="rst-content">
<div role="navigation" aria-label="Page navigation">
<ul class="wy-breadcrumbs">
<li><a href="../../../index.html" class="icon icon-home"></a></li>
<li class="breadcrumb-item"><a href="../../index.html">Recipes</a></li>
<li class="breadcrumb-item"><a href="../index.html">Non Streaming ASR</a></li>
<li class="breadcrumb-item"><a href="index.html">LibriSpeech</a></li>
<li class="breadcrumb-item active">TDNN-LSTM-CTC</li>
<li class="wy-breadcrumbs-aside">
<a href="https://github.com/k2-fsa/icefall/blob/master/docs/source/recipes/Non-streaming-ASR/librispeech/tdnn_lstm_ctc.rst" class="fa fa-github"> Edit on GitHub</a>
</li>
</ul>
<hr/>
</div>
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">
<section id="tdnn-lstm-ctc">
<h1>TDNN-LSTM-CTC<a class="headerlink" href="#tdnn-lstm-ctc" title="Permalink to this heading"></a></h1>
<p>This tutorial shows you how to run a TDNN-LSTM-CTC model with the <a class="reference external" href="https://www.openslr.org/12">LibriSpeech</a> dataset.</p>
<div class="admonition hint">
<p class="admonition-title">Hint</p>
<p>We assume you have read the page <a class="reference internal" href="../../../installation/index.html#install-icefall"><span class="std std-ref">Installation</span></a> and have setup
the environment for <code class="docutils literal notranslate"><span class="pre">icefall</span></code>.</p>
</div>
<section id="data-preparation">
<h2>Data preparation<a class="headerlink" href="#data-preparation" title="Permalink to this heading"></a></h2>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>$<span class="w"> </span><span class="nb">cd</span><span class="w"> </span>egs/librispeech/ASR
$<span class="w"> </span>./prepare.sh
</pre></div>
</div>
<p>The script <code class="docutils literal notranslate"><span class="pre">./prepare.sh</span></code> handles the data preparation for you, <strong>automagically</strong>.
All you need to do is to run it.</p>
<p>The data preparation contains several stages, you can use the following two
options:</p>
<blockquote>
<div><ul class="simple">
<li><p><code class="docutils literal notranslate"><span class="pre">--stage</span></code></p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">--stop-stage</span></code></p></li>
</ul>
</div></blockquote>
<p>to control which stage(s) should be run. By default, all stages are executed.</p>
<p>For example,</p>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>$<span class="w"> </span><span class="nb">cd</span><span class="w"> </span>egs/librispeech/ASR
$<span class="w"> </span>./prepare.sh<span class="w"> </span>--stage<span class="w"> </span><span class="m">0</span><span class="w"> </span>--stop-stage<span class="w"> </span><span class="m">0</span>
</pre></div>
</div>
<p>means to run only stage 0.</p>
<p>To run stage 2 to stage 5, use:</p>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>$<span class="w"> </span>./prepare.sh<span class="w"> </span>--stage<span class="w"> </span><span class="m">2</span><span class="w"> </span>--stop-stage<span class="w"> </span><span class="m">5</span>
</pre></div>
</div>
<p>We provide the following YouTube video showing how to run <code class="docutils literal notranslate"><span class="pre">./prepare.sh</span></code>.</p>
<div class="admonition note">
<p class="admonition-title">Note</p>
<p>To get the latest news of <a class="reference external" href="https://github.com/k2-fsa">next-gen Kaldi</a>, please subscribe
the following YouTube channel by <a class="reference external" href="https://www.youtube.com/channel/UC_VaumpkmINz1pNkFXAN9mw">Nadira Povey</a>:</p>
<blockquote>
<div><p><a class="reference external" href="https://www.youtube.com/channel/UC_VaumpkmINz1pNkFXAN9mw">https://www.youtube.com/channel/UC_VaumpkmINz1pNkFXAN9mw</a></p>
</div></blockquote>
</div>
<div class="video_wrapper" style="">
<iframe allowfullscreen="true" src="https://www.youtube.com/embed/ofEIoJL-mGM" style="border: 0; height: 345px; width: 560px">
</iframe></div></section>
<section id="training">
<h2>Training<a class="headerlink" href="#training" title="Permalink to this heading"></a></h2>
<p>Now describing the training of TDNN-LSTM-CTC model, contained in
the <a class="reference external" href="https://github.com/k2-fsa/icefall/tree/master/egs/librispeech/ASR/tdnn_lstm_ctc">tdnn_lstm_ctc</a>
folder.</p>
<p>The command to run the training part is:</p>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>$<span class="w"> </span><span class="nb">cd</span><span class="w"> </span>egs/librispeech/ASR
$<span class="w"> </span><span class="nb">export</span><span class="w"> </span><span class="nv">CUDA_VISIBLE_DEVICES</span><span class="o">=</span><span class="s2">&quot;0,1,2,3&quot;</span>
$<span class="w"> </span>./tdnn_lstm_ctc/train.py<span class="w"> </span>--world-size<span class="w"> </span><span class="m">4</span>
</pre></div>
</div>
<p>By default, it will run <code class="docutils literal notranslate"><span class="pre">20</span></code> epochs. Training logs and checkpoints are saved
in <code class="docutils literal notranslate"><span class="pre">tdnn_lstm_ctc/exp</span></code>.</p>
<p>In <code class="docutils literal notranslate"><span class="pre">tdnn_lstm_ctc/exp</span></code>, you will find the following files:</p>
<blockquote>
<div><ul>
<li><p><code class="docutils literal notranslate"><span class="pre">epoch-0.pt</span></code>, <code class="docutils literal notranslate"><span class="pre">epoch-1.pt</span></code>, …, <code class="docutils literal notranslate"><span class="pre">epoch-19.pt</span></code></p>
<p>These are checkpoint files, containing model <code class="docutils literal notranslate"><span class="pre">state_dict</span></code> and optimizer <code class="docutils literal notranslate"><span class="pre">state_dict</span></code>.
To resume training from some checkpoint, say <code class="docutils literal notranslate"><span class="pre">epoch-10.pt</span></code>, you can use:</p>
<blockquote>
<div><div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>$<span class="w"> </span>./tdnn_lstm_ctc/train.py<span class="w"> </span>--start-epoch<span class="w"> </span><span class="m">11</span>
</pre></div>
</div>
</div></blockquote>
</li>
<li><p><code class="docutils literal notranslate"><span class="pre">tensorboard/</span></code></p>
<p>This folder contains TensorBoard logs. Training loss, validation loss, learning
rate, etc, are recorded in these logs. You can visualize them by:</p>
<blockquote>
<div><div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>$<span class="w"> </span><span class="nb">cd</span><span class="w"> </span>tdnn_lstm_ctc/exp/tensorboard
$<span class="w"> </span>tensorboard<span class="w"> </span>dev<span class="w"> </span>upload<span class="w"> </span>--logdir<span class="w"> </span>.<span class="w"> </span>--description<span class="w"> </span><span class="s2">&quot;TDNN LSTM training for librispeech with icefall&quot;</span>
</pre></div>
</div>
</div></blockquote>
</li>
<li><p><code class="docutils literal notranslate"><span class="pre">log/log-train-xxxx</span></code></p>
<p>It is the detailed training log in text format, same as the one
you saw printed to the console during training.</p>
</li>
</ul>
</div></blockquote>
<p>To see available training options, you can use:</p>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>$<span class="w"> </span>./tdnn_lstm_ctc/train.py<span class="w"> </span>--help
</pre></div>
</div>
<p>Other training options, e.g., learning rate, results dir, etc., are
pre-configured in the function <code class="docutils literal notranslate"><span class="pre">get_params()</span></code>
in <a class="reference external" href="https://github.com/k2-fsa/icefall/blob/master/egs/librispeech/ASR/tdnn_lstm_ctc/train.py">tdnn_lstm_ctc/train.py</a>.
Normally, you dont need to change them. You can change them by modifying the code, if
you want.</p>
</section>
<section id="decoding">
<h2>Decoding<a class="headerlink" href="#decoding" title="Permalink to this heading"></a></h2>
<p>The decoding part uses checkpoints saved by the training part, so you have
to run the training part first.</p>
<p>The command for decoding is:</p>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>$<span class="w"> </span><span class="nb">export</span><span class="w"> </span><span class="nv">CUDA_VISIBLE_DEVICES</span><span class="o">=</span><span class="s2">&quot;0&quot;</span>
$<span class="w"> </span>./tdnn_lstm_ctc/decode.py
</pre></div>
</div>
<p>You will see the WER in the output log.</p>
<p>Decoded results are saved in <code class="docutils literal notranslate"><span class="pre">tdnn_lstm_ctc/exp</span></code>.</p>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>$<span class="w"> </span>./tdnn_lstm_ctc/decode.py<span class="w"> </span>--help
</pre></div>
</div>
<p>shows you the available decoding options.</p>
<p>Some commonly used options are:</p>
<blockquote>
<div><ul>
<li><p><code class="docutils literal notranslate"><span class="pre">--epoch</span></code></p>
<p>You can select which checkpoint to be used for decoding.
For instance, <code class="docutils literal notranslate"><span class="pre">./tdnn_lstm_ctc/decode.py</span> <span class="pre">--epoch</span> <span class="pre">10</span></code> means to use
<code class="docutils literal notranslate"><span class="pre">./tdnn_lstm_ctc/exp/epoch-10.pt</span></code> for decoding.</p>
</li>
<li><p><code class="docutils literal notranslate"><span class="pre">--avg</span></code></p>
<p>Its related to model averaging. It specifies number of checkpoints
to be averaged. The averaged model is used for decoding.
For example, the following command:</p>
<blockquote>
<div><div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>$<span class="w"> </span>./tdnn_lstm_ctc/decode.py<span class="w"> </span>--epoch<span class="w"> </span><span class="m">10</span><span class="w"> </span>--avg<span class="w"> </span><span class="m">3</span>
</pre></div>
</div>
</div></blockquote>
<p>uses the average of <code class="docutils literal notranslate"><span class="pre">epoch-8.pt</span></code>, <code class="docutils literal notranslate"><span class="pre">epoch-9.pt</span></code> and <code class="docutils literal notranslate"><span class="pre">epoch-10.pt</span></code>
for decoding.</p>
</li>
<li><p><code class="docutils literal notranslate"><span class="pre">--export</span></code></p>
<p>If it is <code class="docutils literal notranslate"><span class="pre">True</span></code>, i.e., <code class="docutils literal notranslate"><span class="pre">./tdnn_lstm_ctc/decode.py</span> <span class="pre">--export</span> <span class="pre">1</span></code>, the code
will save the averaged model to <code class="docutils literal notranslate"><span class="pre">tdnn_lstm_ctc/exp/pretrained.pt</span></code>.
See <a class="reference internal" href="../timit/tdnn_lstm_ctc.html#tdnn-lstm-ctc-use-a-pre-trained-model"><span class="std std-ref">Pre-trained Model</span></a> for how to use it.</p>
</li>
</ul>
</div></blockquote>
</section>
<section id="pre-trained-model">
<span id="tdnn-lstm-ctc-use-a-pre-trained-model"></span><h2>Pre-trained Model<a class="headerlink" href="#pre-trained-model" title="Permalink to this heading"></a></h2>
<p>We have uploaded the pre-trained model to
<a class="reference external" href="https://huggingface.co/pkufool/icefall_asr_librispeech_tdnn-lstm_ctc">https://huggingface.co/pkufool/icefall_asr_librispeech_tdnn-lstm_ctc</a>.</p>
<p>The following shows you how to use the pre-trained model.</p>
<section id="install-kaldifeat">
<h3>Install kaldifeat<a class="headerlink" href="#install-kaldifeat" title="Permalink to this heading"></a></h3>
<p><a class="reference external" href="https://github.com/csukuangfj/kaldifeat">kaldifeat</a> is used to
extract features for a single sound file or multiple sound files
at the same time.</p>
<p>Please refer to <a class="reference external" href="https://github.com/csukuangfj/kaldifeat">https://github.com/csukuangfj/kaldifeat</a> for installation.</p>
</section>
<section id="download-the-pre-trained-model">
<h3>Download the pre-trained model<a class="headerlink" href="#download-the-pre-trained-model" title="Permalink to this heading"></a></h3>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>$<span class="w"> </span><span class="nb">cd</span><span class="w"> </span>egs/librispeech/ASR
$<span class="w"> </span>mkdir<span class="w"> </span>tmp
$<span class="w"> </span><span class="nb">cd</span><span class="w"> </span>tmp
$<span class="w"> </span>git<span class="w"> </span>lfs<span class="w"> </span>install
$<span class="w"> </span>git<span class="w"> </span>clone<span class="w"> </span>https://huggingface.co/pkufool/icefall_asr_librispeech_tdnn-lstm_ctc
</pre></div>
</div>
<div class="admonition caution">
<p class="admonition-title">Caution</p>
<p>You have to use <code class="docutils literal notranslate"><span class="pre">git</span> <span class="pre">lfs</span></code> to download the pre-trained model.</p>
</div>
<div class="admonition caution">
<p class="admonition-title">Caution</p>
<p>In order to use this pre-trained model, your k2 version has to be v1.7 or later.</p>
</div>
<p>After downloading, you will have the following files:</p>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>$<span class="w"> </span><span class="nb">cd</span><span class="w"> </span>egs/librispeech/ASR
$<span class="w"> </span>tree<span class="w"> </span>tmp
</pre></div>
</div>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>tmp/
<span class="sb">`</span>--<span class="w"> </span>icefall_asr_librispeech_tdnn-lstm_ctc
<span class="w"> </span><span class="p">|</span>--<span class="w"> </span>README.md
<span class="w"> </span><span class="p">|</span>--<span class="w"> </span>data
<span class="w"> </span><span class="p">|</span><span class="w"> </span><span class="p">|</span>--<span class="w"> </span>lang_phone
<span class="w"> </span><span class="p">|</span><span class="w"> </span><span class="p">|</span><span class="w"> </span><span class="p">|</span>--<span class="w"> </span>HLG.pt
<span class="w"> </span><span class="p">|</span><span class="w"> </span><span class="p">|</span><span class="w"> </span><span class="p">|</span>--<span class="w"> </span>tokens.txt
<span class="w"> </span><span class="p">|</span><span class="w"> </span><span class="p">|</span><span class="w"> </span><span class="sb">`</span>--<span class="w"> </span>words.txt
<span class="w"> </span><span class="p">|</span><span class="w"> </span><span class="sb">`</span>--<span class="w"> </span>lm
<span class="w"> </span><span class="p">|</span><span class="w"> </span><span class="sb">`</span>--<span class="w"> </span>G_4_gram.pt
<span class="w"> </span><span class="p">|</span>--<span class="w"> </span>exp
<span class="w"> </span><span class="p">|</span><span class="w"> </span><span class="sb">`</span>--<span class="w"> </span>pretrained.pt
<span class="w"> </span><span class="sb">`</span>--<span class="w"> </span>test_wavs
<span class="w"> </span><span class="p">|</span>--<span class="w"> </span><span class="m">1089</span>-134686-0001.flac
<span class="w"> </span><span class="p">|</span>--<span class="w"> </span><span class="m">1221</span>-135766-0001.flac
<span class="w"> </span><span class="p">|</span>--<span class="w"> </span><span class="m">1221</span>-135766-0002.flac
<span class="w"> </span><span class="sb">`</span>--<span class="w"> </span>trans.txt
<span class="m">6</span><span class="w"> </span>directories,<span class="w"> </span><span class="m">10</span><span class="w"> </span>files
</pre></div>
</div>
<p><strong>File descriptions</strong>:</p>
<blockquote>
<div><ul>
<li><p><code class="docutils literal notranslate"><span class="pre">data/lang_phone/HLG.pt</span></code></p>
<blockquote>
<div><p>It is the decoding graph.</p>
</div></blockquote>
</li>
<li><p><code class="docutils literal notranslate"><span class="pre">data/lang_phone/tokens.txt</span></code></p>
<blockquote>
<div><p>It contains tokens and their IDs.</p>
</div></blockquote>
</li>
<li><p><code class="docutils literal notranslate"><span class="pre">data/lang_phone/words.txt</span></code></p>
<blockquote>
<div><p>It contains words and their IDs.</p>
</div></blockquote>
</li>
<li><p><code class="docutils literal notranslate"><span class="pre">data/lm/G_4_gram.pt</span></code></p>
<blockquote>
<div><p>It is a 4-gram LM, useful for LM rescoring.</p>
</div></blockquote>
</li>
<li><p><code class="docutils literal notranslate"><span class="pre">exp/pretrained.pt</span></code></p>
<blockquote>
<div><p>It contains pre-trained model parameters, obtained by averaging
checkpoints from <code class="docutils literal notranslate"><span class="pre">epoch-14.pt</span></code> to <code class="docutils literal notranslate"><span class="pre">epoch-19.pt</span></code>.
Note: We have removed optimizer <code class="docutils literal notranslate"><span class="pre">state_dict</span></code> to reduce file size.</p>
</div></blockquote>
</li>
<li><p><code class="docutils literal notranslate"><span class="pre">test_waves/*.flac</span></code></p>
<blockquote>
<div><p>It contains some test sound files from LibriSpeech <code class="docutils literal notranslate"><span class="pre">test-clean</span></code> dataset.</p>
</div></blockquote>
</li>
<li><p><code class="docutils literal notranslate"><span class="pre">test_waves/trans.txt</span></code></p>
<blockquote>
<div><p>It contains the reference transcripts for the sound files in <code class="docutils literal notranslate"><span class="pre">test_waves/</span></code>.</p>
</div></blockquote>
</li>
</ul>
</div></blockquote>
<p>The information of the test sound files is listed below:</p>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>$<span class="w"> </span>soxi<span class="w"> </span>tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/*.flac
Input<span class="w"> </span>File<span class="w"> </span>:<span class="w"> </span><span class="s1">&#39;tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1089-134686-0001.flac&#39;</span>
Channels<span class="w"> </span>:<span class="w"> </span><span class="m">1</span>
Sample<span class="w"> </span>Rate<span class="w"> </span>:<span class="w"> </span><span class="m">16000</span>
Precision<span class="w"> </span>:<span class="w"> </span><span class="m">16</span>-bit
Duration<span class="w"> </span>:<span class="w"> </span><span class="m">00</span>:00:06.62<span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">106000</span><span class="w"> </span>samples<span class="w"> </span>~<span class="w"> </span><span class="m">496</span>.875<span class="w"> </span>CDDA<span class="w"> </span>sectors
File<span class="w"> </span>Size<span class="w"> </span>:<span class="w"> </span>116k
Bit<span class="w"> </span>Rate<span class="w"> </span>:<span class="w"> </span>140k
Sample<span class="w"> </span>Encoding:<span class="w"> </span><span class="m">16</span>-bit<span class="w"> </span>FLAC
Input<span class="w"> </span>File<span class="w"> </span>:<span class="w"> </span><span class="s1">&#39;tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0001.flac&#39;</span>
Channels<span class="w"> </span>:<span class="w"> </span><span class="m">1</span>
Sample<span class="w"> </span>Rate<span class="w"> </span>:<span class="w"> </span><span class="m">16000</span>
Precision<span class="w"> </span>:<span class="w"> </span><span class="m">16</span>-bit
Duration<span class="w"> </span>:<span class="w"> </span><span class="m">00</span>:00:16.71<span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">267440</span><span class="w"> </span>samples<span class="w"> </span>~<span class="w"> </span><span class="m">1253</span>.62<span class="w"> </span>CDDA<span class="w"> </span>sectors
File<span class="w"> </span>Size<span class="w"> </span>:<span class="w"> </span>343k
Bit<span class="w"> </span>Rate<span class="w"> </span>:<span class="w"> </span>164k
Sample<span class="w"> </span>Encoding:<span class="w"> </span><span class="m">16</span>-bit<span class="w"> </span>FLAC
Input<span class="w"> </span>File<span class="w"> </span>:<span class="w"> </span><span class="s1">&#39;tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0002.flac&#39;</span>
Channels<span class="w"> </span>:<span class="w"> </span><span class="m">1</span>
Sample<span class="w"> </span>Rate<span class="w"> </span>:<span class="w"> </span><span class="m">16000</span>
Precision<span class="w"> </span>:<span class="w"> </span><span class="m">16</span>-bit
Duration<span class="w"> </span>:<span class="w"> </span><span class="m">00</span>:00:04.83<span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">77200</span><span class="w"> </span>samples<span class="w"> </span>~<span class="w"> </span><span class="m">361</span>.875<span class="w"> </span>CDDA<span class="w"> </span>sectors
File<span class="w"> </span>Size<span class="w"> </span>:<span class="w"> </span>105k
Bit<span class="w"> </span>Rate<span class="w"> </span>:<span class="w"> </span>174k
Sample<span class="w"> </span>Encoding:<span class="w"> </span><span class="m">16</span>-bit<span class="w"> </span>FLAC
Total<span class="w"> </span>Duration<span class="w"> </span>of<span class="w"> </span><span class="m">3</span><span class="w"> </span>files:<span class="w"> </span><span class="m">00</span>:00:28.16
</pre></div>
</div>
</section>
<section id="inference-with-a-pre-trained-model">
<h3>Inference with a pre-trained model<a class="headerlink" href="#inference-with-a-pre-trained-model" title="Permalink to this heading"></a></h3>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>$<span class="w"> </span><span class="nb">cd</span><span class="w"> </span>egs/librispeech/ASR
$<span class="w"> </span>./tdnn_lstm_ctc/pretrained.py<span class="w"> </span>--help
</pre></div>
</div>
<p>shows the usage information of <code class="docutils literal notranslate"><span class="pre">./tdnn_lstm_ctc/pretrained.py</span></code>.</p>
<p>To decode with <code class="docutils literal notranslate"><span class="pre">1best</span></code> method, we can use:</p>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>./tdnn_lstm_ctc/pretrained.py<span class="w"> </span><span class="se">\</span>
<span class="w"> </span>--checkpoint<span class="w"> </span>./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/exp/pretraind.pt<span class="w"> </span><span class="se">\</span>
<span class="w"> </span>--words-file<span class="w"> </span>./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/data/lang_phone/words.txt<span class="w"> </span><span class="se">\</span>
<span class="w"> </span>--HLG<span class="w"> </span>./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/data/lang_phone/HLG.pt<span class="w"> </span><span class="se">\</span>
<span class="w"> </span>./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1089-134686-0001.flac<span class="w"> </span><span class="se">\</span>
<span class="w"> </span>./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0001.flac<span class="w"> </span><span class="se">\</span>
<span class="w"> </span>./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0002.flac
</pre></div>
</div>
<p>The output is:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="mi">2021</span><span class="o">-</span><span class="mi">08</span><span class="o">-</span><span class="mi">24</span> <span class="mi">16</span><span class="p">:</span><span class="mi">57</span><span class="p">:</span><span class="mi">13</span><span class="p">,</span><span class="mi">315</span> <span class="n">INFO</span> <span class="p">[</span><span class="n">pretrained</span><span class="o">.</span><span class="n">py</span><span class="p">:</span><span class="mi">168</span><span class="p">]</span> <span class="n">device</span><span class="p">:</span> <span class="n">cuda</span><span class="p">:</span><span class="mi">0</span>
<span class="mi">2021</span><span class="o">-</span><span class="mi">08</span><span class="o">-</span><span class="mi">24</span> <span class="mi">16</span><span class="p">:</span><span class="mi">57</span><span class="p">:</span><span class="mi">13</span><span class="p">,</span><span class="mi">315</span> <span class="n">INFO</span> <span class="p">[</span><span class="n">pretrained</span><span class="o">.</span><span class="n">py</span><span class="p">:</span><span class="mi">170</span><span class="p">]</span> <span class="n">Creating</span> <span class="n">model</span>
<span class="mi">2021</span><span class="o">-</span><span class="mi">08</span><span class="o">-</span><span class="mi">24</span> <span class="mi">16</span><span class="p">:</span><span class="mi">57</span><span class="p">:</span><span class="mi">18</span><span class="p">,</span><span class="mi">331</span> <span class="n">INFO</span> <span class="p">[</span><span class="n">pretrained</span><span class="o">.</span><span class="n">py</span><span class="p">:</span><span class="mi">182</span><span class="p">]</span> <span class="n">Loading</span> <span class="n">HLG</span> <span class="kn">from</span> <span class="nn">.</span><span class="o">/</span><span class="n">tmp</span><span class="o">/</span><span class="n">icefall_asr_librispeech_tdnn</span><span class="o">-</span><span class="n">lstm_ctc</span><span class="o">/</span><span class="n">data</span><span class="o">/</span><span class="n">lang_phone</span><span class="o">/</span><span class="n">HLG</span><span class="o">.</span><span class="n">pt</span>
<span class="mi">2021</span><span class="o">-</span><span class="mi">08</span><span class="o">-</span><span class="mi">24</span> <span class="mi">16</span><span class="p">:</span><span class="mi">57</span><span class="p">:</span><span class="mi">27</span><span class="p">,</span><span class="mi">581</span> <span class="n">INFO</span> <span class="p">[</span><span class="n">pretrained</span><span class="o">.</span><span class="n">py</span><span class="p">:</span><span class="mi">199</span><span class="p">]</span> <span class="n">Constructing</span> <span class="n">Fbank</span> <span class="n">computer</span>
<span class="mi">2021</span><span class="o">-</span><span class="mi">08</span><span class="o">-</span><span class="mi">24</span> <span class="mi">16</span><span class="p">:</span><span class="mi">57</span><span class="p">:</span><span class="mi">27</span><span class="p">,</span><span class="mi">584</span> <span class="n">INFO</span> <span class="p">[</span><span class="n">pretrained</span><span class="o">.</span><span class="n">py</span><span class="p">:</span><span class="mi">209</span><span class="p">]</span> <span class="n">Reading</span> <span class="n">sound</span> <span class="n">files</span><span class="p">:</span> <span class="p">[</span><span class="s1">&#39;./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1089-134686-0001.flac&#39;</span><span class="p">,</span> <span class="s1">&#39;./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0001.flac&#39;</span><span class="p">,</span> <span class="s1">&#39;./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0002.flac&#39;</span><span class="p">]</span>
<span class="mi">2021</span><span class="o">-</span><span class="mi">08</span><span class="o">-</span><span class="mi">24</span> <span class="mi">16</span><span class="p">:</span><span class="mi">57</span><span class="p">:</span><span class="mi">27</span><span class="p">,</span><span class="mi">599</span> <span class="n">INFO</span> <span class="p">[</span><span class="n">pretrained</span><span class="o">.</span><span class="n">py</span><span class="p">:</span><span class="mi">215</span><span class="p">]</span> <span class="n">Decoding</span> <span class="n">started</span>
<span class="mi">2021</span><span class="o">-</span><span class="mi">08</span><span class="o">-</span><span class="mi">24</span> <span class="mi">16</span><span class="p">:</span><span class="mi">57</span><span class="p">:</span><span class="mi">27</span><span class="p">,</span><span class="mi">791</span> <span class="n">INFO</span> <span class="p">[</span><span class="n">pretrained</span><span class="o">.</span><span class="n">py</span><span class="p">:</span><span class="mi">245</span><span class="p">]</span> <span class="n">Use</span> <span class="n">HLG</span> <span class="n">decoding</span>
<span class="mi">2021</span><span class="o">-</span><span class="mi">08</span><span class="o">-</span><span class="mi">24</span> <span class="mi">16</span><span class="p">:</span><span class="mi">57</span><span class="p">:</span><span class="mi">28</span><span class="p">,</span><span class="mi">098</span> <span class="n">INFO</span> <span class="p">[</span><span class="n">pretrained</span><span class="o">.</span><span class="n">py</span><span class="p">:</span><span class="mi">266</span><span class="p">]</span>
<span class="o">./</span><span class="n">tmp</span><span class="o">/</span><span class="n">icefall_asr_librispeech_tdnn</span><span class="o">-</span><span class="n">lstm_ctc</span><span class="o">/</span><span class="n">test_wavs</span><span class="o">/</span><span class="mi">1089</span><span class="o">-</span><span class="mi">134686</span><span class="o">-</span><span class="mf">0001.</span><span class="n">flac</span><span class="p">:</span>
<span class="n">AFTER</span> <span class="n">EARLY</span> <span class="n">NIGHTFALL</span> <span class="n">THE</span> <span class="n">YELLOW</span> <span class="n">LAMPS</span> <span class="n">WOULD</span> <span class="n">LIGHT</span> <span class="n">UP</span> <span class="n">HERE</span> <span class="n">AND</span> <span class="n">THERE</span> <span class="n">THE</span> <span class="n">SQUALID</span> <span class="n">QUARTER</span> <span class="n">OF</span> <span class="n">THE</span> <span class="n">BROTHELS</span>
<span class="o">./</span><span class="n">tmp</span><span class="o">/</span><span class="n">icefall_asr_librispeech_tdnn</span><span class="o">-</span><span class="n">lstm_ctc</span><span class="o">/</span><span class="n">test_wavs</span><span class="o">/</span><span class="mi">1221</span><span class="o">-</span><span class="mi">135766</span><span class="o">-</span><span class="mf">0001.</span><span class="n">flac</span><span class="p">:</span>
<span class="n">GOD</span> <span class="n">AS</span> <span class="n">A</span> <span class="n">DIRECT</span> <span class="n">CONSEQUENCE</span> <span class="n">OF</span> <span class="n">THE</span> <span class="n">SIN</span> <span class="n">WHICH</span> <span class="n">MAN</span> <span class="n">THUS</span> <span class="n">PUNISHED</span> <span class="n">HAD</span> <span class="n">GIVEN</span> <span class="n">HER</span> <span class="n">A</span> <span class="n">LOVELY</span> <span class="n">CHILD</span> <span class="n">WHOSE</span> <span class="n">PLACE</span> <span class="n">WAS</span> <span class="n">ON</span> <span class="n">THAT</span> <span class="n">SAME</span> <span class="n">DISHONORED</span> <span class="n">BOSOM</span> <span class="n">TO</span> <span class="n">CONNECT</span> <span class="n">HER</span> <span class="n">PARENT</span> <span class="n">FOREVER</span> <span class="n">WITH</span> <span class="n">THE</span> <span class="n">RACE</span> <span class="n">AND</span> <span class="n">DESCENT</span> <span class="n">OF</span> <span class="n">MORTALS</span> <span class="n">AND</span> <span class="n">TO</span> <span class="n">BE</span> <span class="n">FINALLY</span> <span class="n">A</span> <span class="n">BLESSED</span> <span class="n">SOUL</span> <span class="n">IN</span> <span class="n">HEAVEN</span>
<span class="o">./</span><span class="n">tmp</span><span class="o">/</span><span class="n">icefall_asr_librispeech_tdnn</span><span class="o">-</span><span class="n">lstm_ctc</span><span class="o">/</span><span class="n">test_wavs</span><span class="o">/</span><span class="mi">1221</span><span class="o">-</span><span class="mi">135766</span><span class="o">-</span><span class="mf">0002.</span><span class="n">flac</span><span class="p">:</span>
<span class="n">YET</span> <span class="n">THESE</span> <span class="n">THOUGHTS</span> <span class="n">AFFECTED</span> <span class="n">HESTER</span> <span class="n">PRYNNE</span> <span class="n">LESS</span> <span class="n">WITH</span> <span class="n">HOPE</span> <span class="n">THAN</span> <span class="n">APPREHENSION</span>
<span class="mi">2021</span><span class="o">-</span><span class="mi">08</span><span class="o">-</span><span class="mi">24</span> <span class="mi">16</span><span class="p">:</span><span class="mi">57</span><span class="p">:</span><span class="mi">28</span><span class="p">,</span><span class="mi">099</span> <span class="n">INFO</span> <span class="p">[</span><span class="n">pretrained</span><span class="o">.</span><span class="n">py</span><span class="p">:</span><span class="mi">268</span><span class="p">]</span> <span class="n">Decoding</span> <span class="n">Done</span>
</pre></div>
</div>
<p>To decode with <code class="docutils literal notranslate"><span class="pre">whole-lattice-rescoring</span></code> methond, you can use</p>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>./tdnn_lstm_ctc/pretrained.py<span class="w"> </span><span class="se">\</span>
<span class="w"> </span>--checkpoint<span class="w"> </span>./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/exp/pretraind.pt<span class="w"> </span><span class="se">\</span>
<span class="w"> </span>--words-file<span class="w"> </span>./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/data/lang_phone/words.txt<span class="w"> </span><span class="se">\</span>
<span class="w"> </span>--HLG<span class="w"> </span>./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/data/lang_phone/HLG.pt<span class="w"> </span><span class="se">\</span>
<span class="w"> </span>--method<span class="w"> </span>whole-lattice-rescoring<span class="w"> </span><span class="se">\</span>
<span class="w"> </span>--G<span class="w"> </span>./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/data/lm/G_4_gram.pt<span class="w"> </span><span class="se">\</span>
<span class="w"> </span>--ngram-lm-scale<span class="w"> </span><span class="m">0</span>.8<span class="w"> </span><span class="se">\</span>
<span class="w"> </span>./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1089-134686-0001.flac<span class="w"> </span><span class="se">\</span>
<span class="w"> </span>./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0001.flac<span class="w"> </span><span class="se">\</span>
<span class="w"> </span>./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0002.flac
</pre></div>
</div>
<p>The decoding output is:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="mi">2021</span><span class="o">-</span><span class="mi">08</span><span class="o">-</span><span class="mi">24</span> <span class="mi">16</span><span class="p">:</span><span class="mi">39</span><span class="p">:</span><span class="mi">24</span><span class="p">,</span><span class="mi">725</span> <span class="n">INFO</span> <span class="p">[</span><span class="n">pretrained</span><span class="o">.</span><span class="n">py</span><span class="p">:</span><span class="mi">168</span><span class="p">]</span> <span class="n">device</span><span class="p">:</span> <span class="n">cuda</span><span class="p">:</span><span class="mi">0</span>
<span class="mi">2021</span><span class="o">-</span><span class="mi">08</span><span class="o">-</span><span class="mi">24</span> <span class="mi">16</span><span class="p">:</span><span class="mi">39</span><span class="p">:</span><span class="mi">24</span><span class="p">,</span><span class="mi">725</span> <span class="n">INFO</span> <span class="p">[</span><span class="n">pretrained</span><span class="o">.</span><span class="n">py</span><span class="p">:</span><span class="mi">170</span><span class="p">]</span> <span class="n">Creating</span> <span class="n">model</span>
<span class="mi">2021</span><span class="o">-</span><span class="mi">08</span><span class="o">-</span><span class="mi">24</span> <span class="mi">16</span><span class="p">:</span><span class="mi">39</span><span class="p">:</span><span class="mi">29</span><span class="p">,</span><span class="mi">403</span> <span class="n">INFO</span> <span class="p">[</span><span class="n">pretrained</span><span class="o">.</span><span class="n">py</span><span class="p">:</span><span class="mi">182</span><span class="p">]</span> <span class="n">Loading</span> <span class="n">HLG</span> <span class="kn">from</span> <span class="nn">.</span><span class="o">/</span><span class="n">tmp</span><span class="o">/</span><span class="n">icefall_asr_librispeech_tdnn</span><span class="o">-</span><span class="n">lstm_ctc</span><span class="o">/</span><span class="n">data</span><span class="o">/</span><span class="n">lang_phone</span><span class="o">/</span><span class="n">HLG</span><span class="o">.</span><span class="n">pt</span>
<span class="mi">2021</span><span class="o">-</span><span class="mi">08</span><span class="o">-</span><span class="mi">24</span> <span class="mi">16</span><span class="p">:</span><span class="mi">39</span><span class="p">:</span><span class="mi">40</span><span class="p">,</span><span class="mi">631</span> <span class="n">INFO</span> <span class="p">[</span><span class="n">pretrained</span><span class="o">.</span><span class="n">py</span><span class="p">:</span><span class="mi">190</span><span class="p">]</span> <span class="n">Loading</span> <span class="n">G</span> <span class="kn">from</span> <span class="nn">.</span><span class="o">/</span><span class="n">tmp</span><span class="o">/</span><span class="n">icefall_asr_librispeech_tdnn</span><span class="o">-</span><span class="n">lstm_ctc</span><span class="o">/</span><span class="n">data</span><span class="o">/</span><span class="n">lm</span><span class="o">/</span><span class="n">G_4_gram</span><span class="o">.</span><span class="n">pt</span>
<span class="mi">2021</span><span class="o">-</span><span class="mi">08</span><span class="o">-</span><span class="mi">24</span> <span class="mi">16</span><span class="p">:</span><span class="mi">39</span><span class="p">:</span><span class="mi">53</span><span class="p">,</span><span class="mi">098</span> <span class="n">INFO</span> <span class="p">[</span><span class="n">pretrained</span><span class="o">.</span><span class="n">py</span><span class="p">:</span><span class="mi">199</span><span class="p">]</span> <span class="n">Constructing</span> <span class="n">Fbank</span> <span class="n">computer</span>
<span class="mi">2021</span><span class="o">-</span><span class="mi">08</span><span class="o">-</span><span class="mi">24</span> <span class="mi">16</span><span class="p">:</span><span class="mi">39</span><span class="p">:</span><span class="mi">53</span><span class="p">,</span><span class="mi">107</span> <span class="n">INFO</span> <span class="p">[</span><span class="n">pretrained</span><span class="o">.</span><span class="n">py</span><span class="p">:</span><span class="mi">209</span><span class="p">]</span> <span class="n">Reading</span> <span class="n">sound</span> <span class="n">files</span><span class="p">:</span> <span class="p">[</span><span class="s1">&#39;./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1089-134686-0001.flac&#39;</span><span class="p">,</span> <span class="s1">&#39;./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0001.flac&#39;</span><span class="p">,</span> <span class="s1">&#39;./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0002.flac&#39;</span><span class="p">]</span>
<span class="mi">2021</span><span class="o">-</span><span class="mi">08</span><span class="o">-</span><span class="mi">24</span> <span class="mi">16</span><span class="p">:</span><span class="mi">39</span><span class="p">:</span><span class="mi">53</span><span class="p">,</span><span class="mi">121</span> <span class="n">INFO</span> <span class="p">[</span><span class="n">pretrained</span><span class="o">.</span><span class="n">py</span><span class="p">:</span><span class="mi">215</span><span class="p">]</span> <span class="n">Decoding</span> <span class="n">started</span>
<span class="mi">2021</span><span class="o">-</span><span class="mi">08</span><span class="o">-</span><span class="mi">24</span> <span class="mi">16</span><span class="p">:</span><span class="mi">39</span><span class="p">:</span><span class="mi">53</span><span class="p">,</span><span class="mi">443</span> <span class="n">INFO</span> <span class="p">[</span><span class="n">pretrained</span><span class="o">.</span><span class="n">py</span><span class="p">:</span><span class="mi">250</span><span class="p">]</span> <span class="n">Use</span> <span class="n">HLG</span> <span class="n">decoding</span> <span class="o">+</span> <span class="n">LM</span> <span class="n">rescoring</span>
<span class="mi">2021</span><span class="o">-</span><span class="mi">08</span><span class="o">-</span><span class="mi">24</span> <span class="mi">16</span><span class="p">:</span><span class="mi">39</span><span class="p">:</span><span class="mi">54</span><span class="p">,</span><span class="mi">010</span> <span class="n">INFO</span> <span class="p">[</span><span class="n">pretrained</span><span class="o">.</span><span class="n">py</span><span class="p">:</span><span class="mi">266</span><span class="p">]</span>
<span class="o">./</span><span class="n">tmp</span><span class="o">/</span><span class="n">icefall_asr_librispeech_tdnn</span><span class="o">-</span><span class="n">lstm_ctc</span><span class="o">/</span><span class="n">test_wavs</span><span class="o">/</span><span class="mi">1089</span><span class="o">-</span><span class="mi">134686</span><span class="o">-</span><span class="mf">0001.</span><span class="n">flac</span><span class="p">:</span>
<span class="n">AFTER</span> <span class="n">EARLY</span> <span class="n">NIGHTFALL</span> <span class="n">THE</span> <span class="n">YELLOW</span> <span class="n">LAMPS</span> <span class="n">WOULD</span> <span class="n">LIGHT</span> <span class="n">UP</span> <span class="n">HERE</span> <span class="n">AND</span> <span class="n">THERE</span> <span class="n">THE</span> <span class="n">SQUALID</span> <span class="n">QUARTER</span> <span class="n">OF</span> <span class="n">THE</span> <span class="n">BROTHELS</span>
<span class="o">./</span><span class="n">tmp</span><span class="o">/</span><span class="n">icefall_asr_librispeech_tdnn</span><span class="o">-</span><span class="n">lstm_ctc</span><span class="o">/</span><span class="n">test_wavs</span><span class="o">/</span><span class="mi">1221</span><span class="o">-</span><span class="mi">135766</span><span class="o">-</span><span class="mf">0001.</span><span class="n">flac</span><span class="p">:</span>
<span class="n">GOD</span> <span class="n">AS</span> <span class="n">A</span> <span class="n">DIRECT</span> <span class="n">CONSEQUENCE</span> <span class="n">OF</span> <span class="n">THE</span> <span class="n">SIN</span> <span class="n">WHICH</span> <span class="n">MAN</span> <span class="n">THUS</span> <span class="n">PUNISHED</span> <span class="n">HAD</span> <span class="n">GIVEN</span> <span class="n">HER</span> <span class="n">A</span> <span class="n">LOVELY</span> <span class="n">CHILD</span> <span class="n">WHOSE</span> <span class="n">PLACE</span> <span class="n">WAS</span> <span class="n">ON</span> <span class="n">THAT</span> <span class="n">SAME</span> <span class="n">DISHONORED</span> <span class="n">BOSOM</span> <span class="n">TO</span> <span class="n">CONNECT</span> <span class="n">HER</span> <span class="n">PARENT</span> <span class="n">FOREVER</span> <span class="n">WITH</span> <span class="n">THE</span> <span class="n">RACE</span> <span class="n">AND</span> <span class="n">DESCENT</span> <span class="n">OF</span> <span class="n">MORTALS</span> <span class="n">AND</span> <span class="n">TO</span> <span class="n">BE</span> <span class="n">FINALLY</span> <span class="n">A</span> <span class="n">BLESSED</span> <span class="n">SOUL</span> <span class="n">IN</span> <span class="n">HEAVEN</span>
<span class="o">./</span><span class="n">tmp</span><span class="o">/</span><span class="n">icefall_asr_librispeech_tdnn</span><span class="o">-</span><span class="n">lstm_ctc</span><span class="o">/</span><span class="n">test_wavs</span><span class="o">/</span><span class="mi">1221</span><span class="o">-</span><span class="mi">135766</span><span class="o">-</span><span class="mf">0002.</span><span class="n">flac</span><span class="p">:</span>
<span class="n">YET</span> <span class="n">THESE</span> <span class="n">THOUGHTS</span> <span class="n">AFFECTED</span> <span class="n">HESTER</span> <span class="n">PRYNNE</span> <span class="n">LESS</span> <span class="n">WITH</span> <span class="n">HOPE</span> <span class="n">THAN</span> <span class="n">APPREHENSION</span>
<span class="mi">2021</span><span class="o">-</span><span class="mi">08</span><span class="o">-</span><span class="mi">24</span> <span class="mi">16</span><span class="p">:</span><span class="mi">39</span><span class="p">:</span><span class="mi">54</span><span class="p">,</span><span class="mi">010</span> <span class="n">INFO</span> <span class="p">[</span><span class="n">pretrained</span><span class="o">.</span><span class="n">py</span><span class="p">:</span><span class="mi">268</span><span class="p">]</span> <span class="n">Decoding</span> <span class="n">Done</span>
</pre></div>
</div>
</section>
</section>
<section id="colab-notebook">
<h2>Colab notebook<a class="headerlink" href="#colab-notebook" title="Permalink to this heading"></a></h2>
<p>We provide a colab notebook for decoding with pre-trained model.</p>
<p><a class="reference external" href="https://colab.research.google.com/drive/1-iSfQMp2So-We_Uu49N4AAcMInB72u9z?usp=sharing"><img alt="librispeech tdnn_lstm_ctc colab notebook" src="https://colab.research.google.com/assets/colab-badge.svg" /></a></p>
<p><strong>Congratulations!</strong> You have finished the TDNN-LSTM-CTC recipe on librispeech in <code class="docutils literal notranslate"><span class="pre">icefall</span></code>.</p>
</section>
</section>
</div>
</div>
<footer><div class="rst-footer-buttons" role="navigation" aria-label="Footer">
<a href="index.html" class="btn btn-neutral float-left" title="LibriSpeech" accesskey="p" rel="prev"><span class="fa fa-arrow-circle-left" aria-hidden="true"></span> Previous</a>
<a href="conformer_ctc.html" class="btn btn-neutral float-right" title="Conformer CTC" accesskey="n" rel="next">Next <span class="fa fa-arrow-circle-right" aria-hidden="true"></span></a>
</div>
<hr/>
<div role="contentinfo">
<p>&#169; Copyright 2021, icefall development team.</p>
</div>
Built with <a href="https://www.sphinx-doc.org/">Sphinx</a> using a
<a href="https://github.com/readthedocs/sphinx_rtd_theme">theme</a>
provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
</section>
</div>
<script>
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
</script>
</body>
</html>