mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 01:52:41 +00:00
289 lines
7.9 KiB
Python
289 lines
7.9 KiB
Python
#!/usr/bin/env python3
|
|
# Copyright 2025 Xiaomi Corp. (authors: Wei Kang)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import argparse
|
|
import logging
|
|
import os
|
|
from pathlib import Path
|
|
from typing import Optional
|
|
from concurrent.futures import ProcessPoolExecutor as Pool
|
|
|
|
import torch
|
|
from lhotse import (
|
|
CutSet,
|
|
LilcomChunkyWriter,
|
|
load_manifest_lazy,
|
|
set_audio_duration_mismatch_tolerance,
|
|
)
|
|
|
|
from feature import TorchAudioFbank, TorchAudioFbankConfig
|
|
import lhotse
|
|
|
|
# Torch's multithreaded behavior needs to be disabled or
|
|
# it wastes a lot of CPU and slow things down.
|
|
# Do this outside of main() in case it needs to take effect
|
|
# even when we are not invoking the main (e.g. when spawning subprocesses).
|
|
torch.set_num_threads(1)
|
|
torch.set_num_interop_threads(1)
|
|
|
|
|
|
def str2bool(v):
|
|
"""Used in argparse.ArgumentParser.add_argument to indicate
|
|
that a type is a bool type and user can enter
|
|
|
|
- yes, true, t, y, 1, to represent True
|
|
- no, false, f, n, 0, to represent False
|
|
|
|
See https://stackoverflow.com/questions/15008758/parsing-boolean-values-with-argparse # noqa
|
|
"""
|
|
if isinstance(v, bool):
|
|
return v
|
|
if v.lower() in ("yes", "true", "t", "y", "1"):
|
|
return True
|
|
elif v.lower() in ("no", "false", "f", "n", "0"):
|
|
return False
|
|
else:
|
|
raise argparse.ArgumentTypeError("Boolean value expected.")
|
|
|
|
|
|
def get_args():
|
|
parser = argparse.ArgumentParser()
|
|
|
|
parser.add_argument(
|
|
"--sampling-rate",
|
|
type=int,
|
|
default=24000,
|
|
help="The target sampling rate, the audio will be resampled to this sampling_rate.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--frame-shift",
|
|
type=int,
|
|
default=256,
|
|
help="Frame shift in samples",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--frame-length",
|
|
type=int,
|
|
default=1024,
|
|
help="Frame length in samples",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--num-mel-bins",
|
|
type=int,
|
|
default=100,
|
|
help="The num of mel filters.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--dataset",
|
|
type=str,
|
|
help="Dataset name.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--subset",
|
|
type=str,
|
|
help="The subset of the dataset.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--source-dir",
|
|
type=str,
|
|
default="data/manifests",
|
|
help="The source directory of manifest files.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--dest-dir",
|
|
type=str,
|
|
default="data/fbank",
|
|
help="The destination directory of manifest files.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--split-cuts",
|
|
type=str2bool,
|
|
default=False,
|
|
help="Whether to use splited cuts.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--split-begin",
|
|
type=int,
|
|
help="Start idx of splited cuts.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--split-end",
|
|
type=int,
|
|
help="End idx of splited cuts.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--batch-duration",
|
|
type=int,
|
|
default=1000,
|
|
help="The batch duration when computing the features.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--num-jobs", type=int, default=20, help="The number of extractor workers."
|
|
)
|
|
|
|
return parser.parse_args()
|
|
|
|
|
|
def compute_fbank_split_single(params, idx):
|
|
lhotse.set_audio_duration_mismatch_tolerance(0.1) # for emilia
|
|
src_dir = Path(params.source_dir)
|
|
output_dir = Path(params.dest_dir)
|
|
num_mel_bins = params.num_mel_bins
|
|
|
|
if not src_dir.exists():
|
|
logging.error(f"{src_dir} not exists")
|
|
return
|
|
|
|
if not output_dir.exists():
|
|
output_dir.mkdir(parents=True, exist_ok=True)
|
|
|
|
num_digits = 8
|
|
|
|
config = TorchAudioFbankConfig(
|
|
sampling_rate=params.sampling_rate,
|
|
n_mels=params.num_mel_bins,
|
|
n_fft=params.frame_length,
|
|
hop_length=params.frame_shift,
|
|
)
|
|
extractor = TorchAudioFbank(config)
|
|
|
|
prefix = params.dataset
|
|
subset = params.subset
|
|
suffix = "jsonl.gz"
|
|
|
|
idx = f"{idx}".zfill(num_digits)
|
|
cuts_filename = f"{prefix}_cuts_{subset}.{idx}.{suffix}"
|
|
|
|
if (src_dir / cuts_filename).is_file():
|
|
logging.info(f"Loading manifests {src_dir / cuts_filename}")
|
|
cut_set = load_manifest_lazy(src_dir / cuts_filename)
|
|
else:
|
|
logging.warning(f"Raw {cuts_filename} not exists, skipping")
|
|
return
|
|
|
|
cut_set = cut_set.resample(params.sampling_rate)
|
|
|
|
if (output_dir / cuts_filename).is_file():
|
|
logging.info(f"{cuts_filename} already exists - skipping.")
|
|
return
|
|
|
|
logging.info(f"Processing {subset}.{idx} of {prefix}")
|
|
|
|
cut_set = cut_set.compute_and_store_features_batch(
|
|
extractor=extractor,
|
|
storage_path=f"{output_dir}/{prefix}_feats_{subset}_{idx}",
|
|
num_workers=4,
|
|
batch_duration=params.batch_duration,
|
|
storage_type=LilcomChunkyWriter,
|
|
overwrite=True,
|
|
)
|
|
cut_set.to_file(output_dir / cuts_filename)
|
|
|
|
|
|
def compute_fbank_split(params):
|
|
if params.split_end < params.split_begin:
|
|
logging.warning(
|
|
f"Split begin should be smaller than split end, given "
|
|
f"{params.split_begin} -> {params.split_end}."
|
|
)
|
|
|
|
with Pool(max_workers=params.num_jobs) as pool:
|
|
futures = [
|
|
pool.submit(compute_fbank_split_single, params, i)
|
|
for i in range(params.split_begin, params.split_end)
|
|
]
|
|
for f in futures:
|
|
f.result()
|
|
f.done()
|
|
|
|
|
|
def compute_fbank(params):
|
|
src_dir = Path(params.source_dir)
|
|
output_dir = Path(params.dest_dir)
|
|
num_jobs = params.num_jobs
|
|
num_mel_bins = params.num_mel_bins
|
|
|
|
prefix = params.dataset
|
|
subset = params.subset
|
|
suffix = "jsonl.gz"
|
|
|
|
cut_set_name = f"{prefix}_cuts_{subset}.{suffix}"
|
|
|
|
if (src_dir / cut_set_name).is_file():
|
|
logging.info(f"Loading manifests {src_dir / cut_set_name}")
|
|
cut_set = load_manifest_lazy(src_dir / cut_set_name)
|
|
else:
|
|
recordings = load_manifest_lazy(
|
|
src_dir / f"{prefix}_recordings_{subset}.{suffix}"
|
|
)
|
|
supervisions = load_manifest_lazy(
|
|
src_dir / f"{prefix}_supervisions_{subset}.{suffix}"
|
|
)
|
|
cut_set = CutSet.from_manifests(
|
|
recordings=recordings,
|
|
supervisions=supervisions,
|
|
)
|
|
|
|
cut_set = cut_set.resample(params.sampling_rate)
|
|
|
|
config = TorchAudioFbankConfig(
|
|
sampling_rate=params.sampling_rate,
|
|
n_mels=params.num_mel_bins,
|
|
n_fft=params.frame_length,
|
|
hop_length=params.frame_shift,
|
|
)
|
|
extractor = TorchAudioFbank(config)
|
|
|
|
cuts_filename = f"{prefix}_cuts_{subset}.{suffix}"
|
|
if (output_dir / cuts_filename).is_file():
|
|
logging.info(f"{prefix} {subset} already exists - skipping.")
|
|
return
|
|
logging.info(f"Processing {subset} of {prefix}")
|
|
|
|
cut_set = cut_set.compute_and_store_features(
|
|
extractor=extractor,
|
|
storage_path=f"{output_dir}/{prefix}_feats_{subset}",
|
|
num_jobs=num_jobs,
|
|
storage_type=LilcomChunkyWriter,
|
|
)
|
|
cut_set.to_file(output_dir / cuts_filename)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
|
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
|
args = get_args()
|
|
logging.info(vars(args))
|
|
if args.split_cuts:
|
|
compute_fbank_split(params=args)
|
|
else:
|
|
compute_fbank(params=args)
|