icefall/egs/zipvoice/local/compute_fbank.py
Wei Kang 06539d2b9d
Add Zipvoice (#1964)
* Add ZipVoice - a flow-matching based zero-shot TTS model.
2025-06-17 20:17:12 +08:00

289 lines
7.9 KiB
Python

#!/usr/bin/env python3
# Copyright 2025 Xiaomi Corp. (authors: Wei Kang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import logging
import os
from pathlib import Path
from typing import Optional
from concurrent.futures import ProcessPoolExecutor as Pool
import torch
from lhotse import (
CutSet,
LilcomChunkyWriter,
load_manifest_lazy,
set_audio_duration_mismatch_tolerance,
)
from feature import TorchAudioFbank, TorchAudioFbankConfig
import lhotse
# Torch's multithreaded behavior needs to be disabled or
# it wastes a lot of CPU and slow things down.
# Do this outside of main() in case it needs to take effect
# even when we are not invoking the main (e.g. when spawning subprocesses).
torch.set_num_threads(1)
torch.set_num_interop_threads(1)
def str2bool(v):
"""Used in argparse.ArgumentParser.add_argument to indicate
that a type is a bool type and user can enter
- yes, true, t, y, 1, to represent True
- no, false, f, n, 0, to represent False
See https://stackoverflow.com/questions/15008758/parsing-boolean-values-with-argparse # noqa
"""
if isinstance(v, bool):
return v
if v.lower() in ("yes", "true", "t", "y", "1"):
return True
elif v.lower() in ("no", "false", "f", "n", "0"):
return False
else:
raise argparse.ArgumentTypeError("Boolean value expected.")
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--sampling-rate",
type=int,
default=24000,
help="The target sampling rate, the audio will be resampled to this sampling_rate.",
)
parser.add_argument(
"--frame-shift",
type=int,
default=256,
help="Frame shift in samples",
)
parser.add_argument(
"--frame-length",
type=int,
default=1024,
help="Frame length in samples",
)
parser.add_argument(
"--num-mel-bins",
type=int,
default=100,
help="The num of mel filters.",
)
parser.add_argument(
"--dataset",
type=str,
help="Dataset name.",
)
parser.add_argument(
"--subset",
type=str,
help="The subset of the dataset.",
)
parser.add_argument(
"--source-dir",
type=str,
default="data/manifests",
help="The source directory of manifest files.",
)
parser.add_argument(
"--dest-dir",
type=str,
default="data/fbank",
help="The destination directory of manifest files.",
)
parser.add_argument(
"--split-cuts",
type=str2bool,
default=False,
help="Whether to use splited cuts.",
)
parser.add_argument(
"--split-begin",
type=int,
help="Start idx of splited cuts.",
)
parser.add_argument(
"--split-end",
type=int,
help="End idx of splited cuts.",
)
parser.add_argument(
"--batch-duration",
type=int,
default=1000,
help="The batch duration when computing the features.",
)
parser.add_argument(
"--num-jobs", type=int, default=20, help="The number of extractor workers."
)
return parser.parse_args()
def compute_fbank_split_single(params, idx):
lhotse.set_audio_duration_mismatch_tolerance(0.1) # for emilia
src_dir = Path(params.source_dir)
output_dir = Path(params.dest_dir)
num_mel_bins = params.num_mel_bins
if not src_dir.exists():
logging.error(f"{src_dir} not exists")
return
if not output_dir.exists():
output_dir.mkdir(parents=True, exist_ok=True)
num_digits = 8
config = TorchAudioFbankConfig(
sampling_rate=params.sampling_rate,
n_mels=params.num_mel_bins,
n_fft=params.frame_length,
hop_length=params.frame_shift,
)
extractor = TorchAudioFbank(config)
prefix = params.dataset
subset = params.subset
suffix = "jsonl.gz"
idx = f"{idx}".zfill(num_digits)
cuts_filename = f"{prefix}_cuts_{subset}.{idx}.{suffix}"
if (src_dir / cuts_filename).is_file():
logging.info(f"Loading manifests {src_dir / cuts_filename}")
cut_set = load_manifest_lazy(src_dir / cuts_filename)
else:
logging.warning(f"Raw {cuts_filename} not exists, skipping")
return
cut_set = cut_set.resample(params.sampling_rate)
if (output_dir / cuts_filename).is_file():
logging.info(f"{cuts_filename} already exists - skipping.")
return
logging.info(f"Processing {subset}.{idx} of {prefix}")
cut_set = cut_set.compute_and_store_features_batch(
extractor=extractor,
storage_path=f"{output_dir}/{prefix}_feats_{subset}_{idx}",
num_workers=4,
batch_duration=params.batch_duration,
storage_type=LilcomChunkyWriter,
overwrite=True,
)
cut_set.to_file(output_dir / cuts_filename)
def compute_fbank_split(params):
if params.split_end < params.split_begin:
logging.warning(
f"Split begin should be smaller than split end, given "
f"{params.split_begin} -> {params.split_end}."
)
with Pool(max_workers=params.num_jobs) as pool:
futures = [
pool.submit(compute_fbank_split_single, params, i)
for i in range(params.split_begin, params.split_end)
]
for f in futures:
f.result()
f.done()
def compute_fbank(params):
src_dir = Path(params.source_dir)
output_dir = Path(params.dest_dir)
num_jobs = params.num_jobs
num_mel_bins = params.num_mel_bins
prefix = params.dataset
subset = params.subset
suffix = "jsonl.gz"
cut_set_name = f"{prefix}_cuts_{subset}.{suffix}"
if (src_dir / cut_set_name).is_file():
logging.info(f"Loading manifests {src_dir / cut_set_name}")
cut_set = load_manifest_lazy(src_dir / cut_set_name)
else:
recordings = load_manifest_lazy(
src_dir / f"{prefix}_recordings_{subset}.{suffix}"
)
supervisions = load_manifest_lazy(
src_dir / f"{prefix}_supervisions_{subset}.{suffix}"
)
cut_set = CutSet.from_manifests(
recordings=recordings,
supervisions=supervisions,
)
cut_set = cut_set.resample(params.sampling_rate)
config = TorchAudioFbankConfig(
sampling_rate=params.sampling_rate,
n_mels=params.num_mel_bins,
n_fft=params.frame_length,
hop_length=params.frame_shift,
)
extractor = TorchAudioFbank(config)
cuts_filename = f"{prefix}_cuts_{subset}.{suffix}"
if (output_dir / cuts_filename).is_file():
logging.info(f"{prefix} {subset} already exists - skipping.")
return
logging.info(f"Processing {subset} of {prefix}")
cut_set = cut_set.compute_and_store_features(
extractor=extractor,
storage_path=f"{output_dir}/{prefix}_feats_{subset}",
num_jobs=num_jobs,
storage_type=LilcomChunkyWriter,
)
cut_set.to_file(output_dir / cuts_filename)
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
args = get_args()
logging.info(vars(args))
if args.split_cuts:
compute_fbank_split(params=args)
else:
compute_fbank(params=args)