icefall/egs/librilight/SSL/local/preprocess_librilight.py
Your Name 8e296b7047 add librilight ssl recipe
update

Update ssl_datamodule.py

Update pretrain.py

Update pretrain.sh

Update pretrain.sh

Update hubert_ce.py

Update pretrain.py
2024-08-10 22:44:20 +08:00

108 lines
3.1 KiB
Python
Executable File

#!/usr/bin/env python3
# Copyright 2024 Xiaomi Corp. (authors: Yifan Yang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import logging
import os
from pathlib import Path
from typing import Optional
import torch
from lhotse import CutSet
from lhotse.recipes.utils import read_manifests_if_cached
from icefall.utils import str2bool
# Torch's multithreaded behavior needs to be disabled or
# it wastes a lot of CPU and slow things down.
# Do this outside of main() in case it needs to take effect
# even when we are not invoking the main (e.g. when spawning subprocesses).
torch.set_num_threads(1)
torch.set_num_interop_threads(1)
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--dataset",
type=str,
help="""Dataset parts to compute fbank. If None, we will use all""",
)
return parser.parse_args()
def preprocess_librilight(
dataset: Optional[str] = None,
):
src_dir = Path("data/manifests")
output_dir = Path("data/kmeans")
if dataset is None:
dataset_parts = (
"small",
"medium",
"large",
)
else:
dataset_parts = dataset.split(" ", -1)
prefix = "librilight"
suffix = "jsonl.gz"
manifests = read_manifests_if_cached(
dataset_parts=dataset_parts,
output_dir=src_dir,
prefix=prefix,
suffix=suffix,
)
assert manifests is not None
assert len(manifests) == len(dataset_parts), (
len(manifests),
len(dataset_parts),
list(manifests.keys()),
dataset_parts,
)
for partition, m in manifests.items():
cuts_filename = f"{prefix}_cuts_{partition}_raw.{suffix}"
if (output_dir / cuts_filename).is_file():
logging.info(f"{partition} already exists - skipping.")
continue
logging.info(f"Processing {partition}")
cut_set = CutSet.from_manifests(
recordings=m["recordings"],
supervisions=m["supervisions"],
)
cut_set = cut_set.trim_to_supervisions(
keep_overlapping=False, min_duration=None
)
logging.info(f"Saving to {output_dir / cuts_filename}")
cut_set.to_file(output_dir / cuts_filename)
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
args = get_args()
logging.info(vars(args))
preprocess_librilight(
dataset=args.dataset,
)