Zengwei Yao a7e142b7ff
Support long audios recognition (#980)
* support long file transcription

* rename recipe as long_file_recog

* add docs

* support multi-gpu decoding

* style fix
2023-05-19 20:27:55 +08:00

190 lines
6.4 KiB
Python

# Copyright 2021 Piotr Żelasko
# Copyright 2022 Xiaomi Corporation (Author: Mingshuang Luo)
# Copyright 2023 Xiaomi Corporation (Author: Zengwei Yao)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import logging
from functools import lru_cache
from pathlib import Path
from typing import Dict, List, Union
import torch
from lhotse import CutSet, Fbank, FbankConfig, load_manifest_lazy
from lhotse.cut import Cut
from lhotse.dataset import ( # noqa F401 for PrecomputedFeatures
CutConcatenate,
CutMix,
DynamicBucketingSampler,
K2SpeechRecognitionDataset,
PrecomputedFeatures,
SimpleCutSampler,
SpecAugment,
)
from lhotse.dataset.input_strategies import ( # noqa F401 For AudioSamples
AudioSamples,
BatchIO,
OnTheFlyFeatures,
)
from torch.utils.data import DataLoader
from icefall.utils import str2bool
class SpeechRecognitionDataset(K2SpeechRecognitionDataset):
def __init__(
self,
return_cuts: bool = False,
input_strategy: BatchIO = PrecomputedFeatures(),
):
super().__init__(return_cuts=return_cuts, input_strategy=input_strategy)
def __getitem__(self, cuts: CutSet) -> Dict[str, Union[torch.Tensor, List[Cut]]]:
"""
Return a new batch, with the batch size automatically determined using the constraints
of max_frames and max_cuts.
"""
self.hdf5_fix.update()
# Note: don't sort cuts here
# Sort the cuts by duration so that the first one determines the batch time dimensions.
# cuts = cuts.sort_by_duration(ascending=False)
# Get a tensor with batched feature matrices, shape (B, T, F)
# Collation performs auto-padding, if necessary.
input_tpl = self.input_strategy(cuts)
if len(input_tpl) == 3:
# An input strategy with fault tolerant audio reading mode.
# "cuts" may be a subset of the original "cuts" variable,
# that only has cuts for which we succesfully read the audio.
inputs, _, cuts = input_tpl
else:
inputs, _ = input_tpl
# Get a dict of tensors that encode the positional information about supervisions
# in the batch of feature matrices. The tensors are named "sequence_idx",
# "start_frame/sample" and "num_frames/samples".
supervision_intervals = self.input_strategy.supervision_intervals(cuts)
batch = {"inputs": inputs, "supervisions": supervision_intervals}
if self.return_cuts:
batch["supervisions"]["cut"] = [cut for cut in cuts]
return batch
class AsrDataModule:
"""
DataModule for k2 ASR experiments.
It assumes there is always one train and valid dataloader,
but there can be multiple test dataloaders (e.g. LibriSpeech test-clean
and test-other).
It contains all the common data pipeline modules used in ASR
experiments, e.g.:
- dynamic batch size,
- bucketing samplers,
- cut concatenation,
- augmentation,
- on-the-fly feature extraction
This class should be derived for specific corpora used in ASR tasks.
"""
def __init__(self, args: argparse.Namespace):
self.args = args
@classmethod
def add_arguments(cls, parser: argparse.ArgumentParser):
group = parser.add_argument_group(
title="ASR data related options",
description="These options are used for the preparation of "
"PyTorch DataLoaders from Lhotse CutSet's -- they control the "
"effective batch sizes, sampling strategies, applied data "
"augmentations, etc.",
)
group.add_argument(
"--manifest-dir",
type=Path,
default=Path("data/manifests_chunk"),
help="Path to directory with train/valid/test cuts.",
)
group.add_argument(
"--max-duration",
type=int,
default=600.0,
help="Maximum pooled recordings duration (seconds) in a "
"single batch. You can reduce it if it causes CUDA OOM.",
)
group.add_argument(
"--bucketing-sampler",
type=str2bool,
default=True,
help="When enabled, the batches will come from buckets of "
"similar duration (saves padding frames).",
)
group.add_argument(
"--return-cuts",
type=str2bool,
default=True,
help="When enabled, each batch will have the "
"field: batch['supervisions']['cut'] with the cuts that "
"were used to construct it.",
)
group.add_argument(
"--num-workers",
type=int,
default=8,
help="The number of training dataloader workers that "
"collect the batches.",
)
group.add_argument(
"--input-strategy",
type=str,
default="PrecomputedFeatures",
help="AudioSamples or PrecomputedFeatures",
)
def dataloaders(self, cuts: CutSet) -> DataLoader:
logging.debug("About to create test dataset")
test = SpeechRecognitionDataset(
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))),
return_cuts=self.args.return_cuts,
)
sampler = SimpleCutSampler(
cuts,
max_duration=self.args.max_duration,
shuffle=False,
drop_last=False,
)
logging.debug("About to create test dataloader")
test_dl = DataLoader(
test,
batch_size=None,
sampler=sampler,
num_workers=self.args.num_workers,
persistent_workers=False,
)
return test_dl
@lru_cache()
def load_subset(self, cuts_filename: Path) -> CutSet:
return load_manifest_lazy(cuts_filename)