mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-13 12:02:21 +00:00
608 lines
19 KiB
Python
Executable File
608 lines
19 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang, Daniel Povey)
|
|
#
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import argparse
|
|
import logging
|
|
from pathlib import Path
|
|
from shutil import copyfile
|
|
from typing import Optional, Tuple
|
|
|
|
import k2
|
|
import dataset # from .
|
|
import madam # from .
|
|
import torch
|
|
import torch.distributed as dist
|
|
import torch.multiprocessing as mp
|
|
import torch.nn as nn
|
|
from conformer import MaskedLmConformer
|
|
from lhotse.utils import fix_random_seed
|
|
from torch.nn.parallel import DistributedDataParallel as DDP
|
|
from torch.nn.utils import clip_grad_norm_
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
from madam import Moam
|
|
|
|
from icefall.checkpoint import load_checkpoint
|
|
from icefall.checkpoint import save_checkpoint as save_checkpoint_impl
|
|
from icefall.dist import cleanup_dist, setup_dist
|
|
|
|
from icefall.utils import (
|
|
AttributeDict,
|
|
setup_logger,
|
|
str2bool,
|
|
)
|
|
|
|
|
|
def get_parser():
|
|
parser = argparse.ArgumentParser(
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--world-size",
|
|
type=int,
|
|
default=1,
|
|
help="Number of GPUs for DDP training.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--master-port",
|
|
type=int,
|
|
default=12354,
|
|
help="Master port to use for DDP training.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--tensorboard",
|
|
type=str2bool,
|
|
default=True,
|
|
help="Should various information be logged in tensorboard.",
|
|
)
|
|
|
|
return parser
|
|
|
|
|
|
def get_params() -> AttributeDict:
|
|
"""Return a dict containing training parameters.
|
|
|
|
All training related parameters that are not passed from the commandline
|
|
is saved in the variable `params`.
|
|
|
|
Commandline options are merged into `params` after they are parsed, so
|
|
you can also access them via `params`.
|
|
|
|
Explanation of options saved in `params`:
|
|
|
|
- exp_dir: It specifies the directory where all training related
|
|
files, e.g., checkpoints, log, etc, are saved
|
|
|
|
- lr: It specifies the initial learning rate
|
|
|
|
- feature_dim: The model input dim. It has to match the one used
|
|
in computing features.
|
|
|
|
- start_epoch: If it is not zero, load checkpoint `start_epoch-1`
|
|
and continue training from that checkpoint.
|
|
|
|
- num_epochs: Number of epochs to train.
|
|
|
|
- num_valid_batches: Number of batches of validation data to use each
|
|
time we compute validation loss
|
|
|
|
- symbols_per_batch: Number of symbols in each batch (sampler will
|
|
choose the number of sentences to satisfy this contraint).
|
|
|
|
- best_train_loss: Best training loss so far. It is used to select
|
|
the model that has the lowest training loss. It is
|
|
updated during the training.
|
|
|
|
- best_valid_loss: Best validation loss so far. It is used to select
|
|
the model that has the lowest validation loss. It is
|
|
updated during the training.
|
|
|
|
- best_train_epoch: It is the epoch that has the best training loss.
|
|
|
|
- best_valid_epoch: It is the epoch that has the best validation loss.
|
|
|
|
- batch_idx_train: Used to writing statistics to tensorboard. It
|
|
contains number of batches trained so far across
|
|
epochs.
|
|
|
|
- log_interval: Print training loss if batch_idx % log_interval` is 0
|
|
|
|
- valid_interval: Run validation if batch_idx % valid_interval is 0
|
|
|
|
- reset_interval: Reset statistics if batch_idx % reset_interval is 0
|
|
|
|
"""
|
|
params = AttributeDict(
|
|
{
|
|
"exp_dir": Path("conformer_lm/exp_1"),
|
|
"lm_dataset": Path("data/lm_training_5000/lm_data.pt"),
|
|
"num_tokens": 5000,
|
|
"blank_sym": 0,
|
|
"bos_sym": 1,
|
|
"eos_sym": 1,
|
|
"start_epoch": 0,
|
|
"num_epochs": 20,
|
|
"num_valid_batches": 100,
|
|
"symbols_per_batch": 10000,
|
|
"best_train_loss": float("inf"),
|
|
"best_valid_loss": float("inf"),
|
|
"best_train_epoch": -1,
|
|
"best_valid_epoch": -1,
|
|
"batch_idx_train": 0,
|
|
"log_interval": 10,
|
|
"reset_interval": 200,
|
|
"valid_interval": 3000,
|
|
"beam_size": 10,
|
|
"accum_grad": 1,
|
|
"attention_dim": 512,
|
|
"nhead": 8,
|
|
"num_decoder_layers": 6,
|
|
"lr_factor": 2.0,
|
|
"warm_step": 20000,
|
|
}
|
|
)
|
|
|
|
return params
|
|
|
|
|
|
def load_checkpoint_if_available(
|
|
params: AttributeDict,
|
|
model: nn.Module,
|
|
optimizer: Optional[torch.optim.Optimizer] = None,
|
|
scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None,
|
|
) -> None:
|
|
"""Load checkpoint from file.
|
|
|
|
If params.start_epoch is positive, it will load the checkpoint from
|
|
`params.start_epoch - 1`. Otherwise, this function does nothing.
|
|
|
|
Apart from loading state dict for `model`, `optimizer` and `scheduler`,
|
|
it also updates `best_train_epoch`, `best_train_loss`, `best_valid_epoch`,
|
|
and `best_valid_loss` in `params`.
|
|
|
|
Args:
|
|
params:
|
|
The return value of :func:`get_params`.
|
|
model:
|
|
The training model.
|
|
optimizer:
|
|
The optimizer that we are using.
|
|
scheduler:
|
|
The learning rate scheduler we are using.
|
|
Returns:
|
|
Return None.
|
|
"""
|
|
if params.start_epoch <= 0:
|
|
return
|
|
|
|
filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt"
|
|
saved_params = load_checkpoint(
|
|
filename,
|
|
model=model,
|
|
optimizer=optimizer,
|
|
scheduler=scheduler,
|
|
)
|
|
|
|
keys = [
|
|
"best_train_epoch",
|
|
"best_valid_epoch",
|
|
"batch_idx_train",
|
|
"best_train_loss",
|
|
"best_valid_loss",
|
|
]
|
|
for k in keys:
|
|
params[k] = saved_params[k]
|
|
|
|
return saved_params
|
|
|
|
|
|
def save_checkpoint(
|
|
params: AttributeDict,
|
|
model: nn.Module,
|
|
optimizer: Optional[torch.optim.Optimizer] = None,
|
|
scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None,
|
|
rank: int = 0,
|
|
) -> None:
|
|
"""Save model, optimizer, scheduler and training stats to file.
|
|
|
|
Args:
|
|
params:
|
|
It is returned by :func:`get_params`.
|
|
model:
|
|
The training model.
|
|
"""
|
|
if rank != 0:
|
|
return
|
|
filename = params.exp_dir / f"epoch-{params.cur_epoch}.pt"
|
|
save_checkpoint_impl(
|
|
filename=filename,
|
|
model=model,
|
|
params=params,
|
|
optimizer=optimizer,
|
|
scheduler=scheduler,
|
|
rank=rank,
|
|
)
|
|
|
|
if params.best_train_epoch == params.cur_epoch:
|
|
best_train_filename = params.exp_dir / "best-train-loss.pt"
|
|
copyfile(src=filename, dst=best_train_filename)
|
|
|
|
if params.best_valid_epoch == params.cur_epoch:
|
|
best_valid_filename = params.exp_dir / "best-valid-loss.pt"
|
|
copyfile(src=filename, dst=best_valid_filename)
|
|
|
|
|
|
def compute_loss(
|
|
model: nn.Module,
|
|
batch: Tuple,
|
|
is_training: bool,
|
|
):
|
|
|
|
"""
|
|
Compute training or validation loss given the model and its inputs
|
|
(this corresponds to log-prob of the targets, with weighting
|
|
of 1.0 for masked subsequences
|
|
(including padding blanks), and something smaller, e.g. 0.25,
|
|
for non-masked positions (this is not totally trivial due to
|
|
a small amount of randomization of symbols).
|
|
|
|
This loss is not normalized; you can divide by batch[4].sum()
|
|
to get a normalized loss (i.e. divide by soft-count).
|
|
|
|
Args:
|
|
params:
|
|
Parameters for training. See :func:`get_params`.
|
|
model:
|
|
The model for training. It is an instance of MaskedLmConformer in our case.
|
|
batch:
|
|
A batch of data, actually a tuple of 5 tensors (on the device), as returned
|
|
by collate_fn in ./dataset.py.
|
|
is_training:
|
|
True for training. False for validation. When it is True, this
|
|
function enables autograd during computation; when it is False, it
|
|
disables autograd.
|
|
|
|
Returns:
|
|
Returns the loss as a scalar tensor.
|
|
"""
|
|
(masked_src_symbols, src_symbols,
|
|
tgt_symbols, src_key_padding_mask, tgt_weights) = batch
|
|
|
|
with torch.set_grad_enabled(is_training):
|
|
memory, pos_emb = model(masked_src_symbols, src_key_padding_mask)
|
|
tgt_nll = model.decoder_nll(memory, pos_emb, src_symbols,
|
|
tgt_symbols, src_key_padding_mask)
|
|
loss = (tgt_nll * tgt_weights).sum()
|
|
|
|
assert loss.requires_grad == is_training
|
|
|
|
return loss
|
|
|
|
|
|
def compute_validation_loss(
|
|
device: torch.device,
|
|
params: AttributeDict,
|
|
model: nn.Module,
|
|
valid_dl: torch.utils.data.DataLoader,
|
|
world_size: int = 1,
|
|
) -> None:
|
|
"""Run the validation process. The validation loss
|
|
is saved in `params.valid_loss`.
|
|
"""
|
|
model.eval()
|
|
|
|
tot_loss = 0.0
|
|
tot_frames = 0.0
|
|
for batch_idx, batch in enumerate(valid_dl):
|
|
batch = tuple(x.to(device) for x in batch)
|
|
|
|
# `batch` is actually a tuple.. we'll unpack it later.
|
|
loss = compute_loss(model, batch, is_training=False)
|
|
num_frames = batch[4].sum()
|
|
|
|
assert loss.requires_grad is False
|
|
assert ctc_loss.requires_grad is False
|
|
assert att_loss.requires_grad is False
|
|
|
|
loss_cpu = loss.detach().cpu().item()
|
|
num_frames_cpu = num_frames.cpu().item()
|
|
|
|
tot_loss += loss_cpu
|
|
tot_frames += num_frames_cpu
|
|
|
|
|
|
if world_size > 1:
|
|
s = torch.tensor(
|
|
[tot_loss, tot_frames],
|
|
device=loss.device,
|
|
)
|
|
dist.all_reduce(s, op=dist.ReduceOp.SUM)
|
|
(tot_loss, tot_frames) = s.cpu().tolist()
|
|
|
|
params.valid_loss = tot_loss / tot_frames
|
|
|
|
if params.valid_loss < params.best_valid_loss:
|
|
params.best_valid_epoch = params.cur_epoch
|
|
params.best_valid_loss = params.valid_loss
|
|
|
|
|
|
def train_one_epoch(
|
|
device: torch.device,
|
|
params: AttributeDict,
|
|
model: nn.Module,
|
|
optimizer: torch.optim.Optimizer,
|
|
train_dl: torch.utils.data.DataLoader,
|
|
valid_dl: torch.utils.data.DataLoader,
|
|
tb_writer: Optional[SummaryWriter] = None,
|
|
world_size: int = 1,
|
|
) -> None:
|
|
"""Train the model for one epoch.
|
|
|
|
The training loss from the mean of all frames is saved in
|
|
`params.train_loss`. It runs the validation process every
|
|
`params.valid_interval` batches.
|
|
|
|
Args:
|
|
device:
|
|
The device to use for training (model must be on this device)
|
|
params:
|
|
It is returned by :func:`get_params`.
|
|
model:
|
|
The model for training.
|
|
optimizer:
|
|
The optimizer we are using.
|
|
train_dl:
|
|
Dataloader for the training dataset.
|
|
valid_dl:
|
|
Dataloader for the validation dataset.
|
|
tb_writer:
|
|
Writer to write log messages to tensorboard.
|
|
world_size:
|
|
Number of nodes in DDP training. If it is 1, DDP is disabled.
|
|
"""
|
|
model.train() # training mode
|
|
|
|
tot_loss = 0.0 # sum of losses over all batches
|
|
tot_frames = 0.0 # sum of frames over all batches
|
|
|
|
params.tot_loss = 0.0
|
|
params.tot_frames = 0.0
|
|
for batch_idx, batch in enumerate(train_dl):
|
|
params.batch_idx_train += 1
|
|
batch = tuple(x.to(device) for x in batch)
|
|
|
|
loss = compute_loss(
|
|
model=model,
|
|
batch=batch,
|
|
is_training=True,
|
|
)
|
|
|
|
optimizer.zero_grad()
|
|
loss.backward() # We are not normalizing by the num-frames, but Adam/Madam are insensitive to the total
|
|
# gradient scale so this should not matter.
|
|
# clip_grad_norm_(model.parameters(), 5.0, 2.0)
|
|
optimizer.step()
|
|
|
|
loss_cpu = loss.detach().cpu().item()
|
|
num_frames_cpu = batch[4].sum().cpu().item()
|
|
|
|
tot_loss += loss_cpu
|
|
tot_frames += num_frames_cpu
|
|
|
|
params.tot_frames += num_frames_cpu
|
|
params.tot_loss += loss_cpu
|
|
|
|
tot_avg_loss = tot_loss / tot_frames
|
|
|
|
if batch_idx % params.log_interval == 0:
|
|
logging.info(
|
|
f"Epoch {params.cur_epoch}, batch {batch_idx}, "
|
|
f"batch avg loss {loss_cpu/num_frames_cpu:.4f}, "
|
|
f"total avg loss: {tot_avg_loss:.4f}, "
|
|
f"batch size: {batch_size}"
|
|
)
|
|
|
|
if tb_writer is not None:
|
|
tb_writer.add_scalar(
|
|
"train/current_loss",
|
|
loss_cpu / params.train_frames,
|
|
params.batch_idx_train,
|
|
)
|
|
tb_writer.add_scalar(
|
|
"train/tot_avg_loss",
|
|
tot_avg_loss,
|
|
params.batch_idx_train,
|
|
)
|
|
if batch_idx > 0 and batch_idx % params.reset_interval == 0:
|
|
tot_loss = 0.0 # sum of losses over all batches
|
|
tot_frames = 0.0 # sum of frames over all batches
|
|
|
|
if batch_idx > 0 and batch_idx % params.valid_interval == 0:
|
|
compute_validation_loss(
|
|
device=device,
|
|
params=params,
|
|
model=model,
|
|
valid_dl=valid_dl,
|
|
world_size=world_size,
|
|
)
|
|
model.train()
|
|
logging.info(
|
|
f"Epoch {params.cur_epoch}, "
|
|
f"valid loss {params.valid_loss:.4f},"
|
|
f" best valid loss: {params.best_valid_loss:.4f} "
|
|
f"best valid epoch: {params.best_valid_epoch}"
|
|
)
|
|
if tb_writer is not None:
|
|
tb_writer.add_scalar(
|
|
"train/valid_loss",
|
|
params.valid_loss,
|
|
params.batch_idx_train,
|
|
)
|
|
|
|
params.train_loss = params.tot_loss / params.tot_frames
|
|
|
|
if params.train_loss < params.best_train_loss:
|
|
params.best_train_epoch = params.cur_epoch
|
|
params.best_train_loss = params.train_loss
|
|
|
|
|
|
def run(rank, world_size, args):
|
|
"""
|
|
Args:
|
|
rank:
|
|
It is a value between 0 and `world_size-1`, which is
|
|
passed automatically by `mp.spawn()` in :func:`main`.
|
|
The node with rank 0 is responsible for saving checkpoint.
|
|
world_size:
|
|
Number of GPUs for DDP training.
|
|
args:
|
|
The return value of get_parser().parse_args()
|
|
"""
|
|
params = get_params()
|
|
params.update(vars(args))
|
|
|
|
fix_random_seed(42)
|
|
if world_size > 1:
|
|
setup_dist(rank, world_size, params.master_port)
|
|
|
|
setup_logger(f"{params.exp_dir}/log/log-train")
|
|
logging.info("Training started")
|
|
logging.info(params)
|
|
|
|
if args.tensorboard and rank == 0:
|
|
tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard")
|
|
else:
|
|
tb_writer = None
|
|
|
|
num_tokens = params.num_tokens
|
|
|
|
device = torch.device("cpu")
|
|
if torch.cuda.is_available():
|
|
device = torch.device("cuda", rank)
|
|
|
|
|
|
logging.info("About to create model")
|
|
model = MaskedLmConformer(
|
|
num_classes=params.num_tokens,
|
|
d_model=params.attention_dim,
|
|
nhead=params.nhead,
|
|
num_decoder_layers=params.num_decoder_layers,
|
|
)
|
|
|
|
checkpoints = load_checkpoint_if_available(params=params, model=model)
|
|
|
|
model.to(device)
|
|
if world_size > 1:
|
|
model = DDP(model, device_ids=[rank])
|
|
|
|
optimizer = Moam(
|
|
model.parameters(),
|
|
model_size=params.attention_dim,
|
|
factor=params.lr_factor,
|
|
warm_step=params.warm_step,
|
|
)
|
|
|
|
if checkpoints:
|
|
optimizer.load_state_dict(checkpoints["optimizer"])
|
|
|
|
train,test = dataset.load_train_test_lm_dataset(params.lm_dataset)
|
|
|
|
collate_fn=(lambda x:dataset.collate_fn(x, bos_sym=params.bos_sym,
|
|
eos_sym=params.eos_sym,
|
|
blank_sym=params.blank_sym,
|
|
mask_proportion=0.15,
|
|
padding_proportion=0.15,
|
|
randomize_proportion=0.05,
|
|
inv_mask_length=0.25,
|
|
unmasked_weight=0.25))
|
|
|
|
train_sampler = dataset.LmBatchSampler(train,
|
|
symbols_per_batch=params.symbols_per_batch,
|
|
world_size=world_size, rank=rank)
|
|
test_sampler = dataset.LmBatchSampler(test,
|
|
symbols_per_batch=params.symbols_per_batch,
|
|
world_size=world_size, rank=rank)
|
|
|
|
train_dl = torch.utils.data.DataLoader(train,
|
|
batch_sampler=train_sampler,
|
|
collate_fn=collate_fn)
|
|
valid_dl = torch.utils.data.DataLoader(test,
|
|
batch_sampler=test_sampler,
|
|
collate_fn=collate_fn)
|
|
|
|
for epoch in range(params.start_epoch, params.num_epochs):
|
|
train_dl.sampler.set_epoch(epoch)
|
|
|
|
cur_lr = optimizer._rate
|
|
if tb_writer is not None:
|
|
tb_writer.add_scalar(
|
|
"train/learning_rate", cur_lr, params.batch_idx_train
|
|
)
|
|
tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train)
|
|
|
|
if rank == 0:
|
|
logging.info("epoch {}, learning rate {}".format(epoch, cur_lr))
|
|
|
|
params.cur_epoch = epoch
|
|
|
|
train_one_epoch(
|
|
device=device,
|
|
params=params,
|
|
model=model,
|
|
optimizer=optimizer,
|
|
train_dl=train_dl,
|
|
valid_dl=valid_dl,
|
|
tb_writer=tb_writer,
|
|
world_size=world_size,
|
|
)
|
|
|
|
save_checkpoint(
|
|
params=params,
|
|
model=model,
|
|
optimizer=optimizer,
|
|
rank=rank,
|
|
)
|
|
|
|
logging.info("Done!")
|
|
|
|
if world_size > 1:
|
|
torch.distributed.barrier()
|
|
cleanup_dist()
|
|
|
|
|
|
def main():
|
|
parser = get_parser()
|
|
args = parser.parse_args()
|
|
|
|
world_size = args.world_size
|
|
assert world_size >= 1
|
|
if world_size > 1:
|
|
mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True)
|
|
else:
|
|
run(rank=0, world_size=1, args=args)
|
|
|
|
|
|
torch.set_num_threads(1)
|
|
torch.set_num_interop_threads(1)
|
|
|
|
if __name__ == "__main__":
|
|
main()
|