mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 18:12:19 +00:00
703 lines
22 KiB
Python
Executable File
703 lines
22 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# flake8: noqa
|
|
#
|
|
# Copyright 2021-2022 Xiaomi Corporation (Author: Fangjun Kuang, Zengwei Yao)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
# This script converts several saved checkpoints
|
|
# to a single one using model averaging.
|
|
"""
|
|
|
|
Usage:
|
|
|
|
(1) Export to torchscript model using torch.jit.trace()
|
|
|
|
./lstm_transducer_stateless2/export.py \
|
|
--exp-dir ./lstm_transducer_stateless2/exp \
|
|
--bpe-model data/lang_bpe_500/bpe.model \
|
|
--epoch 35 \
|
|
--avg 10 \
|
|
--jit-trace 1
|
|
|
|
It will generate 3 files: `encoder_jit_trace.pt`,
|
|
`decoder_jit_trace.pt`, and `joiner_jit_trace.pt`.
|
|
|
|
(2) Export `model.state_dict()`
|
|
|
|
./lstm_transducer_stateless2/export.py \
|
|
--exp-dir ./lstm_transducer_stateless2/exp \
|
|
--bpe-model data/lang_bpe_500/bpe.model \
|
|
--epoch 35 \
|
|
--avg 10
|
|
|
|
It will generate a file `pretrained.pt` in the given `exp_dir`. You can later
|
|
load it by `icefall.checkpoint.load_checkpoint()`.
|
|
|
|
To use the generated file with `lstm_transducer_stateless2/decode.py`,
|
|
you can do:
|
|
|
|
cd /path/to/exp_dir
|
|
ln -s pretrained.pt epoch-9999.pt
|
|
|
|
cd /path/to/egs/librispeech/ASR
|
|
./lstm_transducer_stateless2/decode.py \
|
|
--exp-dir ./lstm_transducer_stateless2/exp \
|
|
--epoch 9999 \
|
|
--avg 1 \
|
|
--max-duration 600 \
|
|
--decoding-method greedy_search \
|
|
--bpe-model data/lang_bpe_500/bpe.model
|
|
|
|
Check ./pretrained.py for its usage.
|
|
|
|
Note: If you don't want to train a model from scratch, we have
|
|
provided one for you. You can get it at
|
|
|
|
https://huggingface.co/csukuangfj/icefall-asr-librispeech-lstm-transducer-stateless2-2022-09-03
|
|
|
|
with the following commands:
|
|
|
|
sudo apt-get install git-lfs
|
|
git lfs install
|
|
git clone https://huggingface.co/csukuangfj/icefall-asr-librispeech-lstm-transducer-stateless2-2022-09-03
|
|
# You will find the pre-trained models in icefall-asr-librispeech-lstm-transducer-stateless2-2022-09-03/exp
|
|
|
|
(3) Export to ONNX format
|
|
|
|
./lstm_transducer_stateless2/export.py \
|
|
--exp-dir ./lstm_transducer_stateless2/exp \
|
|
--bpe-model data/lang_bpe_500/bpe.model \
|
|
--epoch 20 \
|
|
--avg 10 \
|
|
--onnx 1
|
|
|
|
It will generate the following files in the given `exp_dir`.
|
|
|
|
- encoder.onnx
|
|
- decoder.onnx
|
|
- joiner.onnx
|
|
- joiner_encoder_proj.onnx
|
|
- joiner_decoder_proj.onnx
|
|
|
|
Please see ./streaming-onnx-decode.py for usage of the generated files
|
|
|
|
Check
|
|
https://github.com/k2-fsa/sherpa-onnx
|
|
for how to use the exported models outside of icefall.
|
|
"""
|
|
|
|
import argparse
|
|
import logging
|
|
from pathlib import Path
|
|
|
|
import sentencepiece as spm
|
|
import torch
|
|
import torch.nn as nn
|
|
from scaling_converter import convert_scaled_to_non_scaled
|
|
from train import add_model_arguments, get_params, get_transducer_model
|
|
|
|
from icefall.checkpoint import (
|
|
average_checkpoints,
|
|
average_checkpoints_with_averaged_model,
|
|
find_checkpoints,
|
|
load_checkpoint,
|
|
)
|
|
from icefall.utils import str2bool
|
|
|
|
|
|
def get_parser():
|
|
parser = argparse.ArgumentParser(
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--epoch",
|
|
type=int,
|
|
default=28,
|
|
help="""It specifies the checkpoint to use for averaging.
|
|
Note: Epoch counts from 0.
|
|
You can specify --avg to use more checkpoints for model averaging.""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--iter",
|
|
type=int,
|
|
default=0,
|
|
help="""If positive, --epoch is ignored and it
|
|
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
|
You can specify --avg to use more checkpoints for model averaging.
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--avg",
|
|
type=int,
|
|
default=15,
|
|
help="Number of checkpoints to average. Automatically select "
|
|
"consecutive checkpoints before the checkpoint specified by "
|
|
"'--epoch' and '--iter'",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--use-averaged-model",
|
|
type=str2bool,
|
|
default=True,
|
|
help="Whether to load averaged model. Currently it only supports "
|
|
"using --epoch. If True, it would decode with the averaged model "
|
|
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
|
"Actually only the models with epoch number of `epoch-avg` and "
|
|
"`epoch` are loaded for averaging. ",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--exp-dir",
|
|
type=str,
|
|
default="pruned_transducer_stateless3/exp",
|
|
help="""It specifies the directory where all training related
|
|
files, e.g., checkpoints, log, etc, are saved
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--bpe-model",
|
|
type=str,
|
|
default="data/lang_bpe_500/bpe.model",
|
|
help="Path to the BPE model",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--jit-trace",
|
|
type=str2bool,
|
|
default=False,
|
|
help="""True to save a model after applying torch.jit.trace.
|
|
It will generate 3 files:
|
|
- encoder_jit_trace.pt
|
|
- decoder_jit_trace.pt
|
|
- joiner_jit_trace.pt
|
|
|
|
Check ./jit_pretrained.py for how to use them.
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--pnnx",
|
|
type=str2bool,
|
|
default=False,
|
|
help="""True to save a model after applying torch.jit.trace for later
|
|
converting to PNNX. It will generate 3 files:
|
|
- encoder_jit_trace-pnnx.pt
|
|
- decoder_jit_trace-pnnx.pt
|
|
- joiner_jit_trace-pnnx.pt
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--onnx",
|
|
type=str2bool,
|
|
default=False,
|
|
help="""If True, --jit and --pnnx are ignored and it exports the model
|
|
to onnx format. It will generate the following files:
|
|
|
|
- encoder.onnx
|
|
- decoder.onnx
|
|
- joiner.onnx
|
|
- joiner_encoder_proj.onnx
|
|
- joiner_decoder_proj.onnx
|
|
|
|
Refer to ./onnx_check.py and ./onnx_pretrained.py for how to use them.
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--context-size",
|
|
type=int,
|
|
default=2,
|
|
help="The context size in the decoder. 1 means bigram; "
|
|
"2 means tri-gram",
|
|
)
|
|
|
|
add_model_arguments(parser)
|
|
|
|
return parser
|
|
|
|
|
|
def export_encoder_model_jit_trace(
|
|
encoder_model: nn.Module,
|
|
encoder_filename: str,
|
|
) -> None:
|
|
"""Export the given encoder model with torch.jit.trace()
|
|
|
|
Note: The warmup argument is fixed to 1.
|
|
|
|
Args:
|
|
encoder_model:
|
|
The input encoder model
|
|
encoder_filename:
|
|
The filename to save the exported model.
|
|
"""
|
|
x = torch.zeros(1, 100, 80, dtype=torch.float32)
|
|
x_lens = torch.tensor([100], dtype=torch.int64)
|
|
states = encoder_model.get_init_states()
|
|
|
|
traced_model = torch.jit.trace(encoder_model, (x, x_lens, states))
|
|
traced_model.save(encoder_filename)
|
|
logging.info(f"Saved to {encoder_filename}")
|
|
|
|
|
|
def export_decoder_model_jit_trace(
|
|
decoder_model: nn.Module,
|
|
decoder_filename: str,
|
|
) -> None:
|
|
"""Export the given decoder model with torch.jit.trace()
|
|
|
|
Note: The argument need_pad is fixed to False.
|
|
|
|
Args:
|
|
decoder_model:
|
|
The input decoder model
|
|
decoder_filename:
|
|
The filename to save the exported model.
|
|
"""
|
|
y = torch.zeros(10, decoder_model.context_size, dtype=torch.int64)
|
|
need_pad = torch.tensor([False])
|
|
|
|
traced_model = torch.jit.trace(decoder_model, (y, need_pad))
|
|
traced_model.save(decoder_filename)
|
|
logging.info(f"Saved to {decoder_filename}")
|
|
|
|
|
|
def export_joiner_model_jit_trace(
|
|
joiner_model: nn.Module,
|
|
joiner_filename: str,
|
|
) -> None:
|
|
"""Export the given joiner model with torch.jit.trace()
|
|
|
|
Note: The argument project_input is fixed to True. A user should not
|
|
project the encoder_out/decoder_out by himself/herself. The exported joiner
|
|
will do that for the user.
|
|
|
|
Args:
|
|
joiner_model:
|
|
The input joiner model
|
|
joiner_filename:
|
|
The filename to save the exported model.
|
|
|
|
"""
|
|
encoder_out_dim = joiner_model.encoder_proj.weight.shape[1]
|
|
decoder_out_dim = joiner_model.decoder_proj.weight.shape[1]
|
|
encoder_out = torch.rand(1, encoder_out_dim, dtype=torch.float32)
|
|
decoder_out = torch.rand(1, decoder_out_dim, dtype=torch.float32)
|
|
|
|
traced_model = torch.jit.trace(joiner_model, (encoder_out, decoder_out))
|
|
traced_model.save(joiner_filename)
|
|
logging.info(f"Saved to {joiner_filename}")
|
|
|
|
|
|
def export_encoder_model_onnx(
|
|
encoder_model: nn.Module,
|
|
encoder_filename: str,
|
|
opset_version: int = 11,
|
|
) -> None:
|
|
"""Export the given encoder model to ONNX format.
|
|
The exported model has 3 inputs:
|
|
|
|
- x, a tensor of shape (N, T, C); dtype is torch.float32
|
|
- x_lens, a tensor of shape (N,); dtype is torch.int64
|
|
- states: a tuple containing:
|
|
- h0: a tensor of shape (num_layers, N, proj_size)
|
|
- c0: a tensor of shape (num_layers, N, hidden_size)
|
|
|
|
and it has 3 outputs:
|
|
|
|
- encoder_out, a tensor of shape (N, T, C)
|
|
- encoder_out_lens, a tensor of shape (N,)
|
|
- states: a tuple containing:
|
|
- next_h0: a tensor of shape (num_layers, N, proj_size)
|
|
- next_c0: a tensor of shape (num_layers, N, hidden_size)
|
|
|
|
Note: The warmup argument is fixed to 1.
|
|
|
|
Args:
|
|
encoder_model:
|
|
The input encoder model
|
|
encoder_filename:
|
|
The filename to save the exported ONNX model.
|
|
opset_version:
|
|
The opset version to use.
|
|
"""
|
|
N = 1
|
|
x = torch.zeros(N, 9, 80, dtype=torch.float32)
|
|
x_lens = torch.tensor([9], dtype=torch.int64)
|
|
h = torch.rand(encoder_model.num_encoder_layers, N, encoder_model.d_model)
|
|
c = torch.rand(
|
|
encoder_model.num_encoder_layers, N, encoder_model.rnn_hidden_size
|
|
)
|
|
|
|
warmup = 1.0
|
|
torch.onnx.export(
|
|
encoder_model, # use torch.jit.trace() internally
|
|
(x, x_lens, (h, c), warmup),
|
|
encoder_filename,
|
|
verbose=False,
|
|
opset_version=opset_version,
|
|
input_names=["x", "x_lens", "h", "c", "warmup"],
|
|
output_names=["encoder_out", "encoder_out_lens", "next_h", "next_c"],
|
|
dynamic_axes={
|
|
"x": {0: "N", 1: "T"},
|
|
"x_lens": {0: "N"},
|
|
"h": {1: "N"},
|
|
"c": {1: "N"},
|
|
"encoder_out": {0: "N", 1: "T"},
|
|
"encoder_out_lens": {0: "N"},
|
|
"next_h": {1: "N"},
|
|
"next_c": {1: "N"},
|
|
},
|
|
)
|
|
logging.info(f"Saved to {encoder_filename}")
|
|
|
|
|
|
def export_decoder_model_onnx(
|
|
decoder_model: nn.Module,
|
|
decoder_filename: str,
|
|
opset_version: int = 11,
|
|
) -> None:
|
|
"""Export the decoder model to ONNX format.
|
|
|
|
The exported model has one input:
|
|
|
|
- y: a torch.int64 tensor of shape (N, decoder_model.context_size)
|
|
|
|
and has one output:
|
|
|
|
- decoder_out: a torch.float32 tensor of shape (N, 1, C)
|
|
|
|
Note: The argument need_pad is fixed to False.
|
|
|
|
Args:
|
|
decoder_model:
|
|
The decoder model to be exported.
|
|
decoder_filename:
|
|
Filename to save the exported ONNX model.
|
|
opset_version:
|
|
The opset version to use.
|
|
"""
|
|
y = torch.zeros(10, decoder_model.context_size, dtype=torch.int64)
|
|
need_pad = False # Always False, so we can use torch.jit.trace() here
|
|
# Note(fangjun): torch.jit.trace() is more efficient than torch.jit.script()
|
|
# in this case
|
|
torch.onnx.export(
|
|
decoder_model,
|
|
(y, need_pad),
|
|
decoder_filename,
|
|
verbose=False,
|
|
opset_version=opset_version,
|
|
input_names=["y", "need_pad"],
|
|
output_names=["decoder_out"],
|
|
dynamic_axes={
|
|
"y": {0: "N"},
|
|
"decoder_out": {0: "N"},
|
|
},
|
|
)
|
|
logging.info(f"Saved to {decoder_filename}")
|
|
|
|
|
|
def export_joiner_model_onnx(
|
|
joiner_model: nn.Module,
|
|
joiner_filename: str,
|
|
opset_version: int = 11,
|
|
) -> None:
|
|
"""Export the joiner model to ONNX format.
|
|
The exported joiner model has two inputs:
|
|
|
|
- projected_encoder_out: a tensor of shape (N, joiner_dim)
|
|
- projected_decoder_out: a tensor of shape (N, joiner_dim)
|
|
|
|
and produces one output:
|
|
|
|
- logit: a tensor of shape (N, vocab_size)
|
|
|
|
The exported encoder_proj model has one input:
|
|
|
|
- encoder_out: a tensor of shape (N, encoder_out_dim)
|
|
|
|
and produces one output:
|
|
|
|
- projected_encoder_out: a tensor of shape (N, joiner_dim)
|
|
|
|
The exported decoder_proj model has one input:
|
|
|
|
- decoder_out: a tensor of shape (N, decoder_out_dim)
|
|
|
|
and produces one output:
|
|
|
|
- projected_decoder_out: a tensor of shape (N, joiner_dim)
|
|
"""
|
|
encoder_proj_filename = str(joiner_filename).replace(
|
|
".onnx", "_encoder_proj.onnx"
|
|
)
|
|
|
|
decoder_proj_filename = str(joiner_filename).replace(
|
|
".onnx", "_decoder_proj.onnx"
|
|
)
|
|
|
|
encoder_out_dim = joiner_model.encoder_proj.weight.shape[1]
|
|
decoder_out_dim = joiner_model.decoder_proj.weight.shape[1]
|
|
joiner_dim = joiner_model.decoder_proj.weight.shape[0]
|
|
|
|
projected_encoder_out = torch.rand(1, joiner_dim, dtype=torch.float32)
|
|
projected_decoder_out = torch.rand(1, joiner_dim, dtype=torch.float32)
|
|
|
|
project_input = False
|
|
# Note: It uses torch.jit.trace() internally
|
|
torch.onnx.export(
|
|
joiner_model,
|
|
(projected_encoder_out, projected_decoder_out, project_input),
|
|
joiner_filename,
|
|
verbose=False,
|
|
opset_version=opset_version,
|
|
input_names=[
|
|
"projected_encoder_out",
|
|
"projected_decoder_out",
|
|
"project_input",
|
|
],
|
|
output_names=["logit"],
|
|
dynamic_axes={
|
|
"projected_encoder_out": {0: "N"},
|
|
"projected_decoder_out": {0: "N"},
|
|
"logit": {0: "N"},
|
|
},
|
|
)
|
|
logging.info(f"Saved to {joiner_filename}")
|
|
|
|
encoder_out = torch.rand(1, encoder_out_dim, dtype=torch.float32)
|
|
torch.onnx.export(
|
|
joiner_model.encoder_proj,
|
|
encoder_out,
|
|
encoder_proj_filename,
|
|
verbose=False,
|
|
opset_version=opset_version,
|
|
input_names=["encoder_out"],
|
|
output_names=["projected_encoder_out"],
|
|
dynamic_axes={
|
|
"encoder_out": {0: "N"},
|
|
"projected_encoder_out": {0: "N"},
|
|
},
|
|
)
|
|
logging.info(f"Saved to {encoder_proj_filename}")
|
|
|
|
decoder_out = torch.rand(1, decoder_out_dim, dtype=torch.float32)
|
|
torch.onnx.export(
|
|
joiner_model.decoder_proj,
|
|
decoder_out,
|
|
decoder_proj_filename,
|
|
verbose=False,
|
|
opset_version=opset_version,
|
|
input_names=["decoder_out"],
|
|
output_names=["projected_decoder_out"],
|
|
dynamic_axes={
|
|
"decoder_out": {0: "N"},
|
|
"projected_decoder_out": {0: "N"},
|
|
},
|
|
)
|
|
logging.info(f"Saved to {decoder_proj_filename}")
|
|
|
|
|
|
@torch.no_grad()
|
|
def main():
|
|
args = get_parser().parse_args()
|
|
args.exp_dir = Path(args.exp_dir)
|
|
|
|
params = get_params()
|
|
params.update(vars(args))
|
|
|
|
device = torch.device("cpu")
|
|
if torch.cuda.is_available():
|
|
device = torch.device("cuda", 0)
|
|
|
|
logging.info(f"device: {device}")
|
|
|
|
sp = spm.SentencePieceProcessor()
|
|
sp.load(params.bpe_model)
|
|
|
|
# <blk> is defined in local/train_bpe_model.py
|
|
params.blank_id = sp.piece_to_id("<blk>")
|
|
params.vocab_size = sp.get_piece_size()
|
|
|
|
logging.info(params)
|
|
|
|
if params.pnnx:
|
|
params.is_pnnx = params.pnnx
|
|
logging.info("For PNNX")
|
|
|
|
logging.info("About to create model")
|
|
model = get_transducer_model(params, enable_giga=False)
|
|
|
|
num_param = sum([p.numel() for p in model.parameters()])
|
|
logging.info(f"Number of model parameters: {num_param}")
|
|
|
|
if not params.use_averaged_model:
|
|
if params.iter > 0:
|
|
filenames = find_checkpoints(
|
|
params.exp_dir, iteration=-params.iter
|
|
)[: params.avg]
|
|
if len(filenames) == 0:
|
|
raise ValueError(
|
|
f"No checkpoints found for"
|
|
f" --iter {params.iter}, --avg {params.avg}"
|
|
)
|
|
elif len(filenames) < params.avg:
|
|
raise ValueError(
|
|
f"Not enough checkpoints ({len(filenames)}) found for"
|
|
f" --iter {params.iter}, --avg {params.avg}"
|
|
)
|
|
logging.info(f"averaging {filenames}")
|
|
model.to(device)
|
|
model.load_state_dict(
|
|
average_checkpoints(filenames, device=device),
|
|
strict=False,
|
|
)
|
|
elif params.avg == 1:
|
|
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
|
else:
|
|
start = params.epoch - params.avg + 1
|
|
filenames = []
|
|
for i in range(start, params.epoch + 1):
|
|
if i >= 1:
|
|
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
|
logging.info(f"averaging {filenames}")
|
|
model.to(device)
|
|
model.load_state_dict(
|
|
average_checkpoints(filenames, device=device),
|
|
strict=False,
|
|
)
|
|
else:
|
|
if params.iter > 0:
|
|
filenames = find_checkpoints(
|
|
params.exp_dir, iteration=-params.iter
|
|
)[: params.avg + 1]
|
|
if len(filenames) == 0:
|
|
raise ValueError(
|
|
f"No checkpoints found for"
|
|
f" --iter {params.iter}, --avg {params.avg}"
|
|
)
|
|
elif len(filenames) < params.avg + 1:
|
|
raise ValueError(
|
|
f"Not enough checkpoints ({len(filenames)}) found for"
|
|
f" --iter {params.iter}, --avg {params.avg}"
|
|
)
|
|
filename_start = filenames[-1]
|
|
filename_end = filenames[0]
|
|
logging.info(
|
|
"Calculating the averaged model over iteration checkpoints"
|
|
f" from {filename_start} (excluded) to {filename_end}"
|
|
)
|
|
model.to(device)
|
|
model.load_state_dict(
|
|
average_checkpoints_with_averaged_model(
|
|
filename_start=filename_start,
|
|
filename_end=filename_end,
|
|
device=device,
|
|
),
|
|
strict=False,
|
|
)
|
|
else:
|
|
assert params.avg > 0, params.avg
|
|
start = params.epoch - params.avg
|
|
assert start >= 1, start
|
|
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
|
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
|
logging.info(
|
|
f"Calculating the averaged model over epoch range from "
|
|
f"{start} (excluded) to {params.epoch}"
|
|
)
|
|
model.to(device)
|
|
model.load_state_dict(
|
|
average_checkpoints_with_averaged_model(
|
|
filename_start=filename_start,
|
|
filename_end=filename_end,
|
|
device=device,
|
|
),
|
|
strict=False,
|
|
)
|
|
|
|
model.to("cpu")
|
|
model.eval()
|
|
|
|
if params.onnx:
|
|
logging.info("Export model to ONNX format")
|
|
convert_scaled_to_non_scaled(model, inplace=True, is_onnx=True)
|
|
|
|
opset_version = 11
|
|
encoder_filename = params.exp_dir / "encoder.onnx"
|
|
export_encoder_model_onnx(
|
|
model.encoder,
|
|
encoder_filename,
|
|
opset_version=opset_version,
|
|
)
|
|
|
|
decoder_filename = params.exp_dir / "decoder.onnx"
|
|
export_decoder_model_onnx(
|
|
model.decoder,
|
|
decoder_filename,
|
|
opset_version=opset_version,
|
|
)
|
|
|
|
joiner_filename = params.exp_dir / "joiner.onnx"
|
|
export_joiner_model_onnx(
|
|
model.joiner,
|
|
joiner_filename,
|
|
opset_version=opset_version,
|
|
)
|
|
|
|
elif params.pnnx:
|
|
convert_scaled_to_non_scaled(model, inplace=True)
|
|
logging.info("Using torch.jit.trace()")
|
|
encoder_filename = params.exp_dir / "encoder_jit_trace-pnnx.pt"
|
|
export_encoder_model_jit_trace(model.encoder, encoder_filename)
|
|
|
|
decoder_filename = params.exp_dir / "decoder_jit_trace-pnnx.pt"
|
|
export_decoder_model_jit_trace(model.decoder, decoder_filename)
|
|
|
|
joiner_filename = params.exp_dir / "joiner_jit_trace-pnnx.pt"
|
|
export_joiner_model_jit_trace(model.joiner, joiner_filename)
|
|
elif params.jit_trace is True:
|
|
convert_scaled_to_non_scaled(model, inplace=True)
|
|
logging.info("Using torch.jit.trace()")
|
|
encoder_filename = params.exp_dir / "encoder_jit_trace.pt"
|
|
export_encoder_model_jit_trace(model.encoder, encoder_filename)
|
|
|
|
decoder_filename = params.exp_dir / "decoder_jit_trace.pt"
|
|
export_decoder_model_jit_trace(model.decoder, decoder_filename)
|
|
|
|
joiner_filename = params.exp_dir / "joiner_jit_trace.pt"
|
|
export_joiner_model_jit_trace(model.joiner, joiner_filename)
|
|
else:
|
|
logging.info("Not using torchscript")
|
|
# Save it using a format so that it can be loaded
|
|
# by :func:`load_checkpoint`
|
|
filename = params.exp_dir / "pretrained.pt"
|
|
torch.save({"model": model.state_dict()}, str(filename))
|
|
logging.info(f"Saved to {filename}")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
formatter = (
|
|
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
)
|
|
|
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
|
main()
|