mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 18:12:19 +00:00
* Fix an error in TDNN-LSTM training. * WIP: Refactoring * Refactor transformer.py * Remove unused code. * Minor fixes.
60 lines
1.5 KiB
Python
Executable File
60 lines
1.5 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
|
|
"""
|
|
This script takes as input "data/lang/bpe/train.txt"
|
|
and generates "data/lang/bpe/bep.model".
|
|
"""
|
|
|
|
# You can install sentencepiece via:
|
|
#
|
|
# pip install sentencepiece
|
|
#
|
|
# Due to an issue reported in
|
|
# https://github.com/google/sentencepiece/pull/642#issuecomment-857972030
|
|
#
|
|
# Please install a version >=0.1.96
|
|
|
|
import shutil
|
|
from pathlib import Path
|
|
|
|
import sentencepiece as spm
|
|
|
|
|
|
def main():
|
|
model_type = "unigram"
|
|
vocab_size = 5000
|
|
model_prefix = f"data/lang_bpe/{model_type}_{vocab_size}"
|
|
train_text = "data/lang_bpe/train.txt"
|
|
character_coverage = 1.0
|
|
input_sentence_size = 100000000
|
|
|
|
user_defined_symbols = ["<blk>", "<sos/eos>"]
|
|
unk_id = len(user_defined_symbols)
|
|
# Note: unk_id is fixed to 2.
|
|
# If you change it, you should also change other
|
|
# places that are using it.
|
|
|
|
model_file = Path(model_prefix + ".model")
|
|
if not model_file.is_file():
|
|
spm.SentencePieceTrainer.train(
|
|
input=train_text,
|
|
vocab_size=vocab_size,
|
|
model_type=model_type,
|
|
model_prefix=model_prefix,
|
|
input_sentence_size=input_sentence_size,
|
|
character_coverage=character_coverage,
|
|
user_defined_symbols=user_defined_symbols,
|
|
unk_id=unk_id,
|
|
bos_id=-1,
|
|
eos_id=-1,
|
|
)
|
|
|
|
sp = spm.SentencePieceProcessor(model_file=str(model_file))
|
|
vocab_size = sp.vocab_size()
|
|
|
|
shutil.copyfile(model_file, "data/lang_bpe/bpe.model")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|