icefall/egs/aishell3/TTS/local/compute_spectrogram_aishell3.py
2024-04-06 21:49:32 +08:00

111 lines
3.6 KiB
Python
Executable File

#!/usr/bin/env python3
# Copyright 2021-2023 Xiaomi Corp. (authors: Fangjun Kuang,
# Zengwei Yao)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This file computes fbank features of the aishell3 dataset.
It looks for manifests in the directory data/manifests.
The generated spectrogram features are saved in data/spectrogram.
"""
import logging
import os
from pathlib import Path
import torch
from lhotse import (
CutSet,
LilcomChunkyWriter,
Spectrogram,
SpectrogramConfig,
load_manifest,
)
from lhotse.audio import RecordingSet
from lhotse.supervision import SupervisionSet
from icefall.utils import get_executor
# Torch's multithreaded behavior needs to be disabled or
# it wastes a lot of CPU and slow things down.
# Do this outside of main() in case it needs to take effect
# even when we are not invoking the main (e.g. when spawning subprocesses).
torch.set_num_threads(1)
torch.set_num_interop_threads(1)
def compute_spectrogram_aishell3():
src_dir = Path("data/manifests")
output_dir = Path("data/spectrogram")
num_jobs = min(4, os.cpu_count())
sampling_rate = 8000
frame_length = 1024 / sampling_rate # (in second)
frame_shift = 256 / sampling_rate # (in second)
use_fft_mag = True
prefix = "aishell3"
suffix = "jsonl.gz"
partitions = ("test", "train")
config = SpectrogramConfig(
sampling_rate=sampling_rate,
frame_length=frame_length,
frame_shift=frame_shift,
use_fft_mag=use_fft_mag,
)
extractor = Spectrogram(config)
for partition in partitions:
recordings = load_manifest(
src_dir / f"{prefix}_recordings_{partition}.{suffix}", RecordingSet
)
supervisions = load_manifest(
src_dir / f"{prefix}_supervisions_{partition}.{suffix}", SupervisionSet
)
# resample from 44100 to 8000
recordings = recordings.resample(sampling_rate)
with get_executor() as ex: # Initialize the executor only once.
cuts_filename = f"{prefix}_cuts_{partition}.{suffix}"
if (output_dir / cuts_filename).is_file():
logging.info(f"{cuts_filename} already exists - skipping.")
return
logging.info(f"Processing {partition}")
cut_set = CutSet.from_manifests(
recordings=recordings, supervisions=supervisions
)
cut_set = cut_set.compute_and_store_features(
extractor=extractor,
storage_path=f"{output_dir}/{prefix}_feats_{partition}",
# when an executor is specified, make more partitions
num_jobs=num_jobs if ex is None else 80,
executor=ex,
storage_type=LilcomChunkyWriter,
)
cut_set.to_file(output_dir / cuts_filename)
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
compute_spectrogram_aishell3()