icefall/egs/multi_zh-hans/ASR/local/train_bpe_model.py
zr_jin 0f1bc6f8af
Multi_zh-Hans Recipe (#1238)
* Init commit for recipes trained on multiple zh datasets.

* fbank extraction for thchs30

* added support for aishell1

* added support for aishell-2

* fixes

* fixes

* fixes

* added support for stcmds and primewords

* fixes

* added support for magicdata

script for fbank computation not done yet

* added script for magicdata fbank computation

* file permission fixed

* updated for the wenetspeech recipe

* updated

* Update preprocess_kespeech.py

* updated

* updated

* updated

* updated

* file permission fixed

* updated paths

* fixes

* added support for kespeech dev/test set fbank computation

* fixes for file permission

* refined support for KeSpeech

* added scripts for BPE model training

* updated

* init commit for the multi_zh-cn zipformer recipe

* disable speed perturbation by default

* updated

* updated

* added necessary files for the zipformer recipe

* removed redundant wenetspeech M and S sets

* updates for multi dataset decoding

* refined

* formatting issues fixed

* updated

* minor fixes

* this commit finalize the recipe (hopefully)

* fixed formatting issues

* minor fixes

* updated

* using soft links to reduce redundancy

* minor updates

* using soft links to reduce redundancy

* minor updates

* minor updates

* using soft links to reduce redundancy

* minor updates

* Update README.md

* minor updates

* Update egs/multi_zh-hans/ASR/local/compute_fbank_magicdata.py

Co-authored-by: Fangjun Kuang <csukuangfj@gmail.com>

* Update egs/multi_zh-hans/ASR/local/compute_fbank_magicdata.py

Co-authored-by: Fangjun Kuang <csukuangfj@gmail.com>

* Update egs/multi_zh-hans/ASR/local/compute_fbank_stcmds.py

Co-authored-by: Fangjun Kuang <csukuangfj@gmail.com>

* Update egs/multi_zh-hans/ASR/local/compute_fbank_stcmds.py

Co-authored-by: Fangjun Kuang <csukuangfj@gmail.com>

* Update egs/multi_zh-hans/ASR/local/compute_fbank_primewords.py

Co-authored-by: Fangjun Kuang <csukuangfj@gmail.com>

* Update egs/multi_zh-hans/ASR/local/compute_fbank_primewords.py

Co-authored-by: Fangjun Kuang <csukuangfj@gmail.com>

* minor updates

* minor fixes

* fixed a formatting issue

* Update preprocess_kespeech.py

* Update prepare.sh

* Update egs/multi_zh-hans/ASR/local/compute_fbank_kespeech_splits.py

Co-authored-by: Fangjun Kuang <csukuangfj@gmail.com>

* Update egs/multi_zh-hans/ASR/local/preprocess_kespeech.py

Co-authored-by: Fangjun Kuang <csukuangfj@gmail.com>

* removed redundant files

* symlinks added

* minor updates

* added CI tests for `multi_zh-hans`

* minor fixes

* Update run-multi-zh_hans-zipformer.sh

* Update run-multi-zh_hans-zipformer.sh

* Update run-multi-zh_hans-zipformer.sh

* Update run-multi-zh_hans-zipformer.sh

* Update run-multi-zh_hans-zipformer.sh

* Update run-multi-zh_hans-zipformer.sh

* Update run-multi-zh_hans-zipformer.sh

---------

Co-authored-by: Fangjun Kuang <csukuangfj@gmail.com>
2023-09-13 11:57:05 +08:00

110 lines
2.9 KiB
Python
Executable File

#!/usr/bin/env python3
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
# Copyright 2023 Xiaomi Corp. (authors: Zengrui Jin)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# You can install sentencepiece via:
#
# pip install sentencepiece
#
# Due to an issue reported in
# https://github.com/google/sentencepiece/pull/642#issuecomment-857972030
#
# Please install a version >=0.1.96
import argparse
import shutil
from pathlib import Path
import sentencepiece as spm
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--lang-dir",
type=str,
help="""Input and output directory.
The generated bpe.model is saved to this directory.
""",
)
parser.add_argument(
"--transcript",
type=str,
help="Training transcript.",
)
parser.add_argument(
"--vocab-size",
type=int,
help="Vocabulary size for BPE training",
)
parser.add_argument(
"--byte-fallback",
type=bool,
default=True,
help="Enable byte fallback for BPE model.",
)
return parser.parse_args()
def main():
args = get_args()
vocab_size = args.vocab_size
lang_dir = Path(args.lang_dir)
model_type = "unigram"
model_prefix = f"{lang_dir}/{model_type}_{vocab_size}"
train_text = args.transcript
character_coverage = 0.98
input_sentence_size = 100000000
user_defined_symbols = ["<blk>", "<sos/eos>"]
unk_id = len(user_defined_symbols)
# Note: unk_id is fixed to 2.
# If you change it, you should also change other
# places that are using it.
model_file = Path(model_prefix + ".model")
if not model_file.is_file():
spm.SentencePieceTrainer.train(
input=train_text,
vocab_size=vocab_size,
model_type=model_type,
model_prefix=model_prefix,
input_sentence_size=input_sentence_size,
character_coverage=character_coverage,
user_defined_symbols=user_defined_symbols,
unk_id=unk_id,
bos_id=-1,
eos_id=-1,
byte_fallback=args.byte_fallback,
)
else:
print(f"{model_file} exists - skipping")
return
shutil.copyfile(model_file, f"{lang_dir}/bpe.model")
if __name__ == "__main__":
main()