mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 10:02:22 +00:00
148 lines
4.7 KiB
Python
Executable File
148 lines
4.7 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# Copyright 2021-2023 Xiaomi Corp. (authors: Fangjun Kuang,
|
|
# Zengwei Yao,)
|
|
# 2024 The Chinese Univ. of HK (authors: Zengrui Jin)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
"""
|
|
This file computes fbank features of the VCTK dataset.
|
|
It looks for manifests in the directory data/manifests.
|
|
|
|
The generated fbank features are saved in data/spectrogram.
|
|
"""
|
|
|
|
import argparse
|
|
import logging
|
|
import os
|
|
from pathlib import Path
|
|
from typing import Optional
|
|
|
|
import torch
|
|
from lhotse import CutSet, LilcomChunkyWriter, Spectrogram, SpectrogramConfig
|
|
from lhotse.audio import RecordingSet
|
|
from lhotse.recipes.utils import read_manifests_if_cached
|
|
from lhotse.supervision import SupervisionSet
|
|
|
|
from icefall.utils import get_executor
|
|
|
|
# Torch's multithreaded behavior needs to be disabled or
|
|
# it wastes a lot of CPU and slow things down.
|
|
# Do this outside of main() in case it needs to take effect
|
|
# even when we are not invoking the main (e.g. when spawning subprocesses).
|
|
torch.set_num_threads(1)
|
|
torch.set_num_interop_threads(1)
|
|
|
|
|
|
def get_args():
|
|
parser = argparse.ArgumentParser()
|
|
|
|
parser.add_argument(
|
|
"--dataset",
|
|
type=str,
|
|
help="""Dataset parts to compute fbank. If None, we will use all""",
|
|
)
|
|
parser.add_argument(
|
|
"--sampling-rate",
|
|
type=int,
|
|
default=24000,
|
|
help="""Sampling rate of the audio for computing fbank, the default value for LibriTTS is 24000, audio files will be resampled if a different sample rate is provided""",
|
|
)
|
|
|
|
return parser.parse_args()
|
|
|
|
|
|
def compute_spectrogram_libritts(
|
|
dataset: Optional[str] = None, sampling_rate: int = 24000
|
|
):
|
|
src_dir = Path("data/manifests")
|
|
output_dir = Path("data/spectrogram")
|
|
num_jobs = min(32, os.cpu_count())
|
|
|
|
frame_length = 1024 / sampling_rate # (in second)
|
|
frame_shift = 256 / sampling_rate # (in second)
|
|
use_fft_mag = True
|
|
|
|
prefix = "libritts"
|
|
suffix = "jsonl.gz"
|
|
if dataset is None:
|
|
dataset_parts = (
|
|
"dev-clean",
|
|
"dev-other",
|
|
"test-clean",
|
|
"test-other",
|
|
"train-clean-100",
|
|
"train-clean-360",
|
|
"train-other-500",
|
|
)
|
|
else:
|
|
dataset_parts = dataset.split(" ", -1)
|
|
|
|
manifests = read_manifests_if_cached(
|
|
dataset_parts=dataset_parts,
|
|
output_dir=src_dir,
|
|
prefix=prefix,
|
|
suffix=suffix,
|
|
)
|
|
assert manifests is not None
|
|
|
|
assert len(manifests) == len(dataset_parts), (
|
|
len(manifests),
|
|
len(dataset_parts),
|
|
list(manifests.keys()),
|
|
dataset_parts,
|
|
)
|
|
|
|
config = SpectrogramConfig(
|
|
sampling_rate=sampling_rate,
|
|
frame_length=frame_length,
|
|
frame_shift=frame_shift,
|
|
use_fft_mag=use_fft_mag,
|
|
)
|
|
extractor = Spectrogram(config)
|
|
|
|
with get_executor() as ex: # Initialize the executor only once.
|
|
for partition, m in manifests.items():
|
|
cuts_filename = f"{prefix}_cuts_{partition}.{suffix}"
|
|
if (output_dir / cuts_filename).is_file():
|
|
logging.info(f"{partition} already exists - skipping.")
|
|
return
|
|
logging.info(f"Processing {partition}")
|
|
cut_set = CutSet.from_manifests(
|
|
recordings=m["recordings"],
|
|
supervisions=m["supervisions"],
|
|
)
|
|
if sampling_rate != 24000:
|
|
logging.info(f"Resampling audio to {sampling_rate}")
|
|
cut_set = cut_set.resample(sampling_rate)
|
|
|
|
cut_set = cut_set.compute_and_store_features(
|
|
extractor=extractor,
|
|
storage_path=f"{output_dir}/{prefix}_feats_{partition}",
|
|
# when an executor is specified, make more partitions
|
|
num_jobs=num_jobs if ex is None else 80,
|
|
executor=ex,
|
|
storage_type=LilcomChunkyWriter,
|
|
)
|
|
cut_set.to_file(output_dir / cuts_filename)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
|
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
|
compute_spectrogram_libritts()
|