icefall/egs/libritts/CODEC/encodec/base_discriminators.py
zr_jin e8b6b920c0
A LibriTTS recipe on both ASR & Neural Codec Tasks (#1746)
* added ASR & CODEC recipes for LibriTTS corpus
2024-10-21 11:30:14 +08:00

252 lines
8.5 KiB
Python

#!/usr/bin/env python3
# Copyright 2024 The Chinese University of HK (Author: Zengrui Jin)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchaudio
from einops import rearrange
from modules.conv import NormConv1d, NormConv2d
def get_padding(kernel_size, dilation=1) -> int:
return int((kernel_size * dilation - dilation) / 2)
def get_2d_padding(kernel_size: Tuple[int, int], dilation: Tuple[int, int] = (1, 1)):
return (
((kernel_size[0] - 1) * dilation[0]) // 2,
((kernel_size[1] - 1) * dilation[1]) // 2,
)
class DiscriminatorP(nn.Module):
def __init__(
self,
period,
kernel_size=5,
stride=3,
activation: str = "LeakyReLU",
activation_params: dict = {"negative_slope": 0.2},
):
super(DiscriminatorP, self).__init__()
self.period = period
self.activation = getattr(torch.nn, activation)(**activation_params)
self.convs = nn.ModuleList(
[
NormConv2d(
1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0)
),
NormConv2d(
32,
32,
(kernel_size, 1),
(stride, 1),
padding=(get_padding(5, 1), 0),
),
NormConv2d(
32,
32,
(kernel_size, 1),
(stride, 1),
padding=(get_padding(5, 1), 0),
),
NormConv2d(
32,
32,
(kernel_size, 1),
(stride, 1),
padding=(get_padding(5, 1), 0),
),
NormConv2d(32, 32, (kernel_size, 1), 1, padding=(2, 0)),
]
)
self.conv_post = NormConv2d(32, 1, (3, 1), 1, padding=(1, 0))
def forward(self, x):
fmap = []
# 1d to 2d
b, c, t = x.shape
if t % self.period != 0: # pad first
n_pad = self.period - (t % self.period)
x = F.pad(x, (0, n_pad), "reflect")
t = t + n_pad
x = x.view(b, c, t // self.period, self.period)
for l in self.convs:
x = l(x)
x = self.activation(x)
fmap.append(x)
x = self.conv_post(x)
fmap.append(x)
x = torch.flatten(x, 1, -1)
return x, fmap
class DiscriminatorS(nn.Module):
def __init__(
self,
activation: str = "LeakyReLU",
activation_params: dict = {"negative_slope": 0.2},
):
super(DiscriminatorS, self).__init__()
self.activation = getattr(torch.nn, activation)(**activation_params)
self.convs = nn.ModuleList(
[
NormConv1d(1, 32, 15, 1, padding=7),
NormConv1d(32, 32, 41, 2, groups=4, padding=20),
NormConv1d(32, 32, 41, 2, groups=16, padding=20),
NormConv1d(32, 32, 41, 4, groups=16, padding=20),
NormConv1d(32, 32, 41, 4, groups=16, padding=20),
NormConv1d(32, 32, 41, 1, groups=16, padding=20),
NormConv1d(32, 32, 5, 1, padding=2),
]
)
self.conv_post = NormConv1d(32, 1, 3, 1, padding=1)
def forward(self, x):
fmap = []
for l in self.convs:
x = l(x)
x = self.activation(x)
fmap.append(x)
x = self.conv_post(x)
fmap.append(x)
x = torch.flatten(x, 1, -1)
return x, fmap
class DiscriminatorSTFT(nn.Module):
"""STFT sub-discriminator.
Args:
filters (int): Number of filters in convolutions
in_channels (int): Number of input channels. Default: 1
out_channels (int): Number of output channels. Default: 1
n_fft (int): Size of FFT for each scale. Default: 1024
hop_length (int): Length of hop between STFT windows for each scale. Default: 256
kernel_size (tuple of int): Inner Conv2d kernel sizes. Default: ``(3, 9)``
stride (tuple of int): Inner Conv2d strides. Default: ``(1, 2)``
dilations (list of int): Inner Conv2d dilation on the time dimension. Default: ``[1, 2, 4]``
win_length (int): Window size for each scale. Default: 1024
normalized (bool): Whether to normalize by magnitude after stft. Default: True
norm (str): Normalization method. Default: `'weight_norm'`
activation (str): Activation function. Default: `'LeakyReLU'`
activation_params (dict): Parameters to provide to the activation function.
growth (int): Growth factor for the filters. Default: 1
"""
def __init__(
self,
n_filters: int,
in_channels: int = 1,
out_channels: int = 1,
n_fft: int = 1024,
hop_length: int = 256,
win_length: int = 1024,
max_filters: int = 1024,
filters_scale: int = 1,
kernel_size: Tuple[int, int] = (3, 9),
dilations: List[int] = [1, 2, 4],
stride: Tuple[int, int] = (1, 2),
normalized: bool = True,
norm: str = "weight_norm",
activation: str = "LeakyReLU",
activation_params: dict = {"negative_slope": 0.2},
):
super().__init__()
assert len(kernel_size) == 2
assert len(stride) == 2
self.filters = n_filters
self.in_channels = in_channels
self.out_channels = out_channels
self.n_fft = n_fft
self.hop_length = hop_length
self.win_length = win_length
self.normalized = normalized
self.activation = getattr(torch.nn, activation)(**activation_params)
self.spec_transform = torchaudio.transforms.Spectrogram(
n_fft=self.n_fft,
hop_length=self.hop_length,
win_length=self.win_length,
window_fn=torch.hann_window,
normalized=self.normalized,
center=False,
pad_mode=None,
power=None,
)
spec_channels = 2 * self.in_channels
self.convs = nn.ModuleList()
self.convs.append(
NormConv2d(
spec_channels,
self.filters,
kernel_size=kernel_size,
padding=get_2d_padding(kernel_size),
)
)
in_chs = min(filters_scale * self.filters, max_filters)
for i, dilation in enumerate(dilations):
out_chs = min((filters_scale ** (i + 1)) * self.filters, max_filters)
self.convs.append(
NormConv2d(
in_chs,
out_chs,
kernel_size=kernel_size,
stride=stride,
dilation=(dilation, 1),
padding=get_2d_padding(kernel_size, (dilation, 1)),
norm=norm,
)
)
in_chs = out_chs
out_chs = min(
(filters_scale ** (len(dilations) + 1)) * self.filters, max_filters
)
self.convs.append(
NormConv2d(
in_chs,
out_chs,
kernel_size=(kernel_size[0], kernel_size[0]),
padding=get_2d_padding((kernel_size[0], kernel_size[0])),
norm=norm,
)
)
self.conv_post = NormConv2d(
out_chs,
self.out_channels,
kernel_size=(kernel_size[0], kernel_size[0]),
padding=get_2d_padding((kernel_size[0], kernel_size[0])),
norm=norm,
)
def forward(self, x: torch.Tensor):
fmap = []
z = self.spec_transform(x) # [B, 2, Freq, Frames, 2]
z = torch.cat([z.real, z.imag], dim=1)
z = rearrange(z, "b c w t -> b c t w")
for i, layer in enumerate(self.convs):
z = layer(z)
z = self.activation(z)
fmap.append(z)
z = self.conv_post(z)
return z, fmap