icefall/egs/libritts/ASR/prepare.sh
zr_jin e8b6b920c0
A LibriTTS recipe on both ASR & Neural Codec Tasks (#1746)
* added ASR & CODEC recipes for LibriTTS corpus
2024-10-21 11:30:14 +08:00

195 lines
5.4 KiB
Bash
Executable File

#!/usr/bin/env bash
# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674
export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
set -eou pipefail
stage=0
stop_stage=100
sampling_rate=16000
nj=32
perturb_speed=true
vocab_sizes=(
# 5000
# 2000
# 1000
500
)
dl_dir=$PWD/download
. shared/parse_options.sh || exit 1
# All files generated by this script are saved in "data".
# You can safely remove "data" and rerun this script to regenerate it.
mkdir -p data
log() {
# This function is from espnet
local fname=${BASH_SOURCE[1]##*/}
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
}
log "dl_dir: $dl_dir"
if [ $stage -le -1 ] && [ $stop_stage -ge -1 ]; then
log "Stage -1: Download LM" # we directly use the librispeech lm here
mkdir -p $dl_dir/lm
if [ ! -e $dl_dir/lm/.done ]; then
./local/download_lm.py --out-dir=$dl_dir/lm
touch $dl_dir/lm/.done
fi
fi
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
log "Stage 0: Download data"
# If you have pre-downloaded it to /path/to/LibriTTS,
# you can create a symlink
#
# ln -sfv /path/to/LibriTTS $dl_dir/LibriTTS
#
if [ ! -d $dl_dir/LibriTTS ]; then
lhotse download libritts $dl_dir
fi
# If you have pre-downloaded it to /path/to/musan,
# you can create a symlink
#
# ln -sfv /path/to/musan $dl_dir/musan
#
if [ ! -d $dl_dir/musan ]; then
lhotse download musan $dl_dir
fi
fi
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
log "Stage 1: Prepare LibriTTS manifest"
# We assume that you have downloaded the LibriTTS corpus
# to $dl_dir/LibriTTS
mkdir -p data/manifests
if [ ! -e data/manifests/.libritts.done ]; then
lhotse prepare libritts --num-jobs 32 $dl_dir/LibriTTS data/manifests
touch data/manifests/.libritts.done
fi
fi
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
log "Stage 2: Prepare musan manifest"
# We assume that you have downloaded the musan corpus
# to data/musan
if [ ! -f data/manifests/.musan_manifests.done ]; then
log "It may take 6 minutes"
mkdir -p data/manifests
lhotse prepare musan $dl_dir/musan data/manifests
touch data/manifests/.musan_manifests.done
fi
fi
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
log "Stage 3: Compute Fbank for LibriTTS"
mkdir -p data/fbank
if [ ! -e data/fbank/.libritts.done ]; then
./local/compute_fbank_libritts.py \
--sampling-rate $sampling_rate \
--perturb-speed $perturb_speed
touch data/fbank/.libritts.done
fi
# Here we shuffle and combine the train-clean-100, train-clean-360 and
# train-other-500 together to form the training set.
if [ ! -f data/fbank/libritts_cuts_train-all-shuf.jsonl.gz ]; then
cat <(gunzip -c data/fbank/libritts_cuts_train-clean-100.jsonl.gz) \
<(gunzip -c data/fbank/libritts_cuts_train-clean-360.jsonl.gz) \
<(gunzip -c data/fbank/libritts_cuts_train-other-500.jsonl.gz) | \
shuf | gzip -c > data/fbank/libritts_cuts_train-all-shuf.jsonl.gz
fi
if [ ! -e data/fbank/.libritts-validated.done ]; then
log "Validating data/fbank for LibriTTS"
./local/validate_manifest.py \
data/fbank/libritts_cuts_train-all-shuf.jsonl.gz
touch data/fbank/.libritts-validated.done
fi
fi
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
log "Stage 4: Compute fbank for musan"
if [ ! -f data/fbank/.msuan.done ]; then
mkdir -p data/fbank
./local/compute_fbank_musan.py
touch data/fbank/.msuan.done
fi
fi
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
log "Stage 5: Train BPE model for normalized text"
if [ ! -f data/text ]; then
gunzip -c data/manifests/libritts_supervisions_train-clean-100.jsonl.gz \
| jq ".text" | sed 's/"//g' \
| ./local/norm_text.py > data/text
gunzip -c data/manifests/libritts_supervisions_train-clean-360.jsonl.gz \
| jq ".text" | sed 's/"//g' \
| ./local/norm_text.py >> data/text
gunzip -c data/manifests/libritts_supervisions_train-other-500.jsonl.gz \
| jq ".text" | sed 's/"//g' \
| ./local/norm_text.py >> data/text
fi
for vocab_size in ${vocab_sizes[@]}; do
lang_dir=data/lang_bpe_${vocab_size}
mkdir -p $lang_dir
cp data/text $lang_dir/text
if [ ! -f $lang_dir/bpe.model ]; then
./local/train_bpe_model.py \
--lang-dir $lang_dir \
--vocab-size $vocab_size \
--transcript $lang_dir/text
fi
done
fi
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
log "Stage 6: Prepare phone based lang"
lang_dir=data/lang_phone
mkdir -p $lang_dir
if [ ! -f $dl_dir/lm/librispeech-lexicon.txt ]; then
log "No lexicon file in $dl_dir/lm, please run :"
log "prepare.sh --stage -1 --stop-stage -1"
exit -1
fi
if [ ! -f $lang_dir/lexicon.txt ]; then
(echo '!SIL SIL'; echo '<SPOKEN_NOISE> SPN'; echo '<UNK> SPN'; ) |
cat - $dl_dir/lm/librispeech-lexicon.txt |
sort | uniq > $lang_dir/lexicon.txt
fi
if [ ! -f $lang_dir/L_disambig.pt ]; then
./local/prepare_lang.py --lang-dir $lang_dir
fi
if [ ! -f $lang_dir/L.fst ]; then
log "Converting L.pt to L.fst"
./shared/convert-k2-to-openfst.py \
--olabels aux_labels \
$lang_dir/L.pt \
$lang_dir/L.fst
fi
if [ ! -f $lang_dir/L_disambig.fst ]; then
log "Converting L_disambig.pt to L_disambig.fst"
./shared/convert-k2-to-openfst.py \
--olabels aux_labels \
$lang_dir/L_disambig.pt \
$lang_dir/L_disambig.fst
fi
fi