154 lines
5.0 KiB
Python

# Copyright 2021-2023 Xiaomi Corp. (authors: Xiaoyu Yang,
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Tuple
import torch
import torch.nn as nn
from encoder_interface import EncoderInterface
from icefall.utils import make_pad_mask
class AudioTaggingModel(nn.Module):
def __init__(
self,
encoder_embed: nn.Module,
encoder: EncoderInterface,
encoder_dim: int = 384,
num_events: int = 527,
):
"""An audio tagging model
Args:
encoder_embed:
It is a Convolutional 2D subsampling module. It converts
an input of shape (N, T, idim) to an output of of shape
(N, T', odim), where T' = (T-3)//2-2 = (T-7)//2.
encoder:
It is the transcription network in the paper. Its accepts
two inputs: `x` of (N, T, encoder_dim) and `x_lens` of shape (N,).
It returns two tensors: `logits` of shape (N, T, encoder_dim) and
`logit_lens` of shape (N,).
encoder_dim:
Dimension of the encoder.
num_event:
The number of classes.
"""
super().__init__()
assert isinstance(encoder, EncoderInterface), type(encoder)
self.encoder_embed = encoder_embed
self.encoder = encoder
self.encoder_dim = encoder_dim
self.classifier = nn.Sequential(
nn.Dropout(0.1),
nn.Linear(encoder_dim, num_events),
)
# for multi-class classification
self.criterion = torch.nn.BCEWithLogitsLoss(reduction="sum")
def forward_encoder(
self,
x: torch.Tensor,
x_lens: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Compute encoder outputs.
Args:
x:
A 3-D tensor of shape (N, T, C).
x_lens:
A 1-D tensor of shape (N,). It contains the number of frames in `x`
before padding.
Returns:
encoder_out:
Encoder output, of shape (N, T, C).
encoder_out_lens:
Encoder output lengths, of shape (N,).
"""
# logging.info(f"Memory allocated at entry: {torch.cuda.memory_allocated() // 1000000}M")
x, x_lens = self.encoder_embed(x, x_lens)
# logging.info(f"Memory allocated after encoder_embed: {torch.cuda.memory_allocated() // 1000000}M")
src_key_padding_mask = make_pad_mask(x_lens)
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
encoder_out, encoder_out_lens = self.encoder(x, x_lens, src_key_padding_mask)
encoder_out = encoder_out.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
assert torch.all(encoder_out_lens > 0), (x_lens, encoder_out_lens)
return encoder_out, encoder_out_lens
def forward(
self,
x: torch.Tensor,
x_lens: torch.Tensor,
target: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Args:
x:
A 3-D tensor of shape (N, T, C).
x_lens:
A 1-D tensor of shape (N,). It contains the number of frames in `x`
before padding.
target:
The ground truth label of audio events, could be many hot
Returns:
Return the binary crossentropy loss
"""
assert x.ndim == 3, x.shape
assert x_lens.ndim == 1, x_lens.shape
# Compute encoder outputs
encoder_out, encoder_out_lens = self.forward_encoder(x, x_lens)
# Forward the speaker module
logits = self.forward_audio_tagging(
encoder_out=encoder_out, encoder_out_lens=encoder_out_lens
) # (N, num_classes)
loss = self.criterion(logits, target)
return loss
def forward_audio_tagging(self, encoder_out, encoder_out_lens):
"""
Args:
encoder_out:
A 3-D tensor of shape (N, T, C).
encoder_out_lens:
A 1-D tensor of shape (N,). It contains the number of frames in `x`
before padding.
Returns:
A 3-D tensor of shape (N, num_classes).
"""
logits = self.classifier(encoder_out) # (N, T, num_classes)
padding_mask = make_pad_mask(encoder_out_lens)
logits[padding_mask] = 0
logits = logits.sum(dim=1) # mask the padding frames
logits = logits / (~padding_mask).sum(dim=1).unsqueeze(-1).expand_as(
logits
) # normalize the logits
return logits