icefall/test/test_bpe_graph_compiler.py
Fangjun Kuang 53b79fafa7
Add MMI training with word pieces as modelling unit. (#6)
* Fix an error in TDNN-LSTM training.

* WIP: Refactoring

* Refactor transformer.py

* Remove unused code.

* Minor fixes.

* Fix decoder padding mask.

* Add MMI training with word pieces.

* Remove unused files.

* Minor fixes.

* Refactoring.

* Minor fixes.

* Use pre-computed alignments in LF-MMI training.

* Minor fixes.

* Update decoding script.

* Add doc about how to check and use extracted alignments.

* Fix style issues.

* Fix typos.

* Fix style issues.

* Disable macOS tests for now.
2021-10-18 15:20:32 +08:00

42 lines
1.4 KiB
Python
Executable File

#!/usr/bin/env python3
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See ../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from pathlib import Path
from icefall.bpe_graph_compiler import BpeCtcTrainingGraphCompiler
from icefall.lexicon import UniqLexicon
ICEFALL_DIR = Path(__file__).resolve().parent.parent
def test():
lang_dir = ICEFALL_DIR / "egs/librispeech/ASR/data/lang_bpe"
if not lang_dir.is_dir():
return
compiler = BpeCtcTrainingGraphCompiler(lang_dir)
ids = compiler.texts_to_ids(["HELLO", "WORLD ZZZ"])
compiler.compile(ids)
lexicon = UniqLexicon(lang_dir, uniq_filename="lexicon.txt")
ids0 = lexicon.words_to_piece_ids(["HELLO"])
assert ids[0] == ids0.values().tolist()
ids1 = lexicon.words_to_piece_ids(["WORLD", "ZZZ"])
assert ids[1] == ids1.values().tolist()