mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
576 lines
17 KiB
Python
Executable File
576 lines
17 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
|
|
import argparse
|
|
import logging
|
|
from pathlib import Path
|
|
from shutil import copyfile
|
|
from typing import Optional, Tuple
|
|
|
|
import k2
|
|
import torch
|
|
import torch.multiprocessing as mp
|
|
import torch.nn as nn
|
|
import torch.optim as optim
|
|
from asr_datamodule import YesNoAsrDataModule
|
|
from lhotse.utils import fix_random_seed
|
|
from model import Tdnn
|
|
from torch import Tensor
|
|
from torch.nn.parallel import DistributedDataParallel as DDP
|
|
from torch.nn.utils import clip_grad_norm_
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
|
|
from icefall.checkpoint import load_checkpoint
|
|
from icefall.checkpoint import save_checkpoint as save_checkpoint_impl
|
|
from icefall.dist import cleanup_dist, setup_dist
|
|
from icefall.env import get_env_info
|
|
from icefall.graph_compiler import CtcTrainingGraphCompiler
|
|
from icefall.lexicon import Lexicon
|
|
from icefall.utils import AttributeDict, MetricsTracker, setup_logger, str2bool
|
|
|
|
|
|
def get_parser():
|
|
parser = argparse.ArgumentParser(
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--world-size",
|
|
type=int,
|
|
default=1,
|
|
help="Number of GPUs for DDP training.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--master-port",
|
|
type=int,
|
|
default=12354,
|
|
help="Master port to use for DDP training.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--tensorboard",
|
|
type=str2bool,
|
|
default=True,
|
|
help="Should various information be logged in tensorboard.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--num-epochs",
|
|
type=int,
|
|
default=15,
|
|
help="Number of epochs to train.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--start-epoch",
|
|
type=int,
|
|
default=0,
|
|
help="""Resume training from from this epoch.
|
|
If it is positive, it will load checkpoint from
|
|
tdnn/exp/epoch-{start_epoch-1}.pt
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--seed",
|
|
type=int,
|
|
default=42,
|
|
help="The seed for random generators intended for reproducibility",
|
|
)
|
|
|
|
return parser
|
|
|
|
|
|
def get_params() -> AttributeDict:
|
|
"""Return a dict containing training parameters.
|
|
|
|
All training related parameters that are not passed from the commandline
|
|
is saved in the variable `params`.
|
|
|
|
Commandline options are merged into `params` after they are parsed, so
|
|
you can also access them via `params`.
|
|
|
|
Explanation of options saved in `params`:
|
|
|
|
- exp_dir: It specifies the directory where all training related
|
|
files, e.g., checkpoints, log, etc, are saved
|
|
|
|
- lang_dir: It contains language related input files such as
|
|
"lexicon.txt"
|
|
|
|
- lr: It specifies the initial learning rate
|
|
|
|
- feature_dim: The model input dim. It has to match the one used
|
|
in computing features.
|
|
|
|
- weight_decay: The weight_decay for the optimizer.
|
|
|
|
- subsampling_factor: The subsampling factor for the model.
|
|
|
|
- start_epoch: If it is not zero, load checkpoint `start_epoch-1`
|
|
and continue training from that checkpoint.
|
|
|
|
- best_train_loss: Best training loss so far. It is used to select
|
|
the model that has the lowest training loss. It is
|
|
updated during the training.
|
|
|
|
- best_valid_loss: Best validation loss so far. It is used to select
|
|
the model that has the lowest validation loss. It is
|
|
updated during the training.
|
|
|
|
- best_train_epoch: It is the epoch that has the best training loss.
|
|
|
|
- best_valid_epoch: It is the epoch that has the best validation loss.
|
|
|
|
- batch_idx_train: Used to writing statistics to tensorboard. It
|
|
contains number of batches trained so far across
|
|
epochs.
|
|
|
|
- log_interval: Print training loss if batch_idx % log_interval` is 0
|
|
|
|
- valid_interval: Run validation if batch_idx % valid_interval` is 0
|
|
|
|
- reset_interval: Reset statistics if batch_idx % reset_interval is 0
|
|
|
|
- beam_size: It is used in k2.ctc_loss
|
|
|
|
- reduction: It is used in k2.ctc_loss
|
|
|
|
- use_double_scores: It is used in k2.ctc_loss
|
|
"""
|
|
params = AttributeDict(
|
|
{
|
|
"exp_dir": Path("tdnn/exp"),
|
|
"lang_dir": Path("data/lang_phone"),
|
|
"lr": 1e-2,
|
|
"feature_dim": 23,
|
|
"weight_decay": 1e-6,
|
|
"start_epoch": 0,
|
|
"best_train_loss": float("inf"),
|
|
"best_valid_loss": float("inf"),
|
|
"best_train_epoch": -1,
|
|
"best_valid_epoch": -1,
|
|
"batch_idx_train": 0,
|
|
"log_interval": 10,
|
|
"reset_interval": 20,
|
|
"valid_interval": 10,
|
|
"beam_size": 10,
|
|
"reduction": "sum",
|
|
"use_double_scores": True,
|
|
}
|
|
)
|
|
|
|
return params
|
|
|
|
|
|
def load_checkpoint_if_available(
|
|
params: AttributeDict,
|
|
model: nn.Module,
|
|
optimizer: Optional[torch.optim.Optimizer] = None,
|
|
scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None,
|
|
) -> None:
|
|
"""Load checkpoint from file.
|
|
|
|
If params.start_epoch is positive, it will load the checkpoint from
|
|
`params.start_epoch - 1`. Otherwise, this function does nothing.
|
|
|
|
Apart from loading state dict for `model`, `optimizer` and `scheduler`,
|
|
it also updates `best_train_epoch`, `best_train_loss`, `best_valid_epoch`,
|
|
and `best_valid_loss` in `params`.
|
|
|
|
Args:
|
|
params:
|
|
The return value of :func:`get_params`.
|
|
model:
|
|
The training model.
|
|
optimizer:
|
|
The optimizer that we are using.
|
|
scheduler:
|
|
The learning rate scheduler we are using.
|
|
Returns:
|
|
Return None.
|
|
"""
|
|
if params.start_epoch <= 0:
|
|
return
|
|
|
|
filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt"
|
|
saved_params = load_checkpoint(
|
|
filename,
|
|
model=model,
|
|
optimizer=optimizer,
|
|
scheduler=scheduler,
|
|
)
|
|
|
|
keys = [
|
|
"best_train_epoch",
|
|
"best_valid_epoch",
|
|
"batch_idx_train",
|
|
"best_train_loss",
|
|
"best_valid_loss",
|
|
]
|
|
for k in keys:
|
|
params[k] = saved_params[k]
|
|
|
|
return saved_params
|
|
|
|
|
|
def save_checkpoint(
|
|
params: AttributeDict,
|
|
model: nn.Module,
|
|
optimizer: torch.optim.Optimizer,
|
|
scheduler: torch.optim.lr_scheduler._LRScheduler,
|
|
rank: int = 0,
|
|
) -> None:
|
|
"""Save model, optimizer, scheduler and training stats to file.
|
|
|
|
Args:
|
|
params:
|
|
It is returned by :func:`get_params`.
|
|
model:
|
|
The training model.
|
|
"""
|
|
if rank != 0:
|
|
return
|
|
filename = params.exp_dir / f"epoch-{params.cur_epoch}.pt"
|
|
save_checkpoint_impl(
|
|
filename=filename,
|
|
model=model,
|
|
params=params,
|
|
optimizer=optimizer,
|
|
scheduler=scheduler,
|
|
rank=rank,
|
|
)
|
|
|
|
if params.best_train_epoch == params.cur_epoch:
|
|
best_train_filename = params.exp_dir / "best-train-loss.pt"
|
|
copyfile(src=filename, dst=best_train_filename)
|
|
|
|
if params.best_valid_epoch == params.cur_epoch:
|
|
best_valid_filename = params.exp_dir / "best-valid-loss.pt"
|
|
copyfile(src=filename, dst=best_valid_filename)
|
|
|
|
|
|
def compute_loss(
|
|
params: AttributeDict,
|
|
model: nn.Module,
|
|
batch: dict,
|
|
graph_compiler: CtcTrainingGraphCompiler,
|
|
is_training: bool,
|
|
) -> Tuple[Tensor, MetricsTracker]:
|
|
"""
|
|
Compute CTC loss given the model and its inputs.
|
|
|
|
Args:
|
|
params:
|
|
Parameters for training. See :func:`get_params`.
|
|
model:
|
|
The model for training. It is an instance of Tdnn in our case.
|
|
batch:
|
|
A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()`
|
|
for the content in it.
|
|
graph_compiler:
|
|
It is used to build a decoding graph from a ctc topo and training
|
|
transcript. The training transcript is contained in the given `batch`,
|
|
while the ctc topo is built when this compiler is instantiated.
|
|
is_training:
|
|
True for training. False for validation. When it is True, this
|
|
function enables autograd during computation; when it is False, it
|
|
disables autograd.
|
|
"""
|
|
device = graph_compiler.device
|
|
feature = batch["inputs"]
|
|
# at entry, feature is (N, T, C)
|
|
assert feature.ndim == 3
|
|
feature = feature.to(device)
|
|
|
|
with torch.set_grad_enabled(is_training):
|
|
nnet_output = model(feature)
|
|
# nnet_output is (N, T, C)
|
|
|
|
# NOTE: We need `encode_supervisions` to sort sequences with
|
|
# different duration in decreasing order, required by
|
|
# `k2.intersect_dense` called in `k2.ctc_loss`
|
|
supervisions = batch["supervisions"]
|
|
texts = supervisions["text"]
|
|
|
|
batch_size = nnet_output.shape[0]
|
|
supervision_segments = torch.tensor(
|
|
[[i, 0, nnet_output.shape[1]] for i in range(batch_size)],
|
|
dtype=torch.int32,
|
|
)
|
|
|
|
decoding_graph = graph_compiler.compile(texts)
|
|
|
|
dense_fsa_vec = k2.DenseFsaVec(
|
|
nnet_output,
|
|
supervision_segments,
|
|
)
|
|
|
|
loss = k2.ctc_loss(
|
|
decoding_graph=decoding_graph,
|
|
dense_fsa_vec=dense_fsa_vec,
|
|
output_beam=params.beam_size,
|
|
reduction=params.reduction,
|
|
use_double_scores=params.use_double_scores,
|
|
)
|
|
|
|
assert loss.requires_grad == is_training
|
|
|
|
info = MetricsTracker()
|
|
info["frames"] = supervision_segments[:, 2].sum().item()
|
|
info["loss"] = loss.detach().cpu().item()
|
|
|
|
return loss, info
|
|
|
|
|
|
def compute_validation_loss(
|
|
params: AttributeDict,
|
|
model: nn.Module,
|
|
graph_compiler: CtcTrainingGraphCompiler,
|
|
valid_dl: torch.utils.data.DataLoader,
|
|
world_size: int = 1,
|
|
) -> MetricsTracker:
|
|
"""Run the validation process. The validation loss
|
|
is saved in `params.valid_loss`.
|
|
"""
|
|
model.eval()
|
|
|
|
tot_loss = MetricsTracker()
|
|
|
|
for batch_idx, batch in enumerate(valid_dl):
|
|
loss, loss_info = compute_loss(
|
|
params=params,
|
|
model=model,
|
|
batch=batch,
|
|
graph_compiler=graph_compiler,
|
|
is_training=False,
|
|
)
|
|
assert loss.requires_grad is False
|
|
|
|
tot_loss = tot_loss + loss_info
|
|
|
|
if world_size > 1:
|
|
tot_loss.reduce(loss.device)
|
|
|
|
loss_value = tot_loss["loss"] / tot_loss["frames"]
|
|
|
|
if loss_value < params.best_valid_loss:
|
|
params.best_valid_epoch = params.cur_epoch
|
|
params.best_valid_loss = loss_value
|
|
|
|
return tot_loss
|
|
|
|
|
|
def train_one_epoch(
|
|
params: AttributeDict,
|
|
model: nn.Module,
|
|
optimizer: torch.optim.Optimizer,
|
|
graph_compiler: CtcTrainingGraphCompiler,
|
|
train_dl: torch.utils.data.DataLoader,
|
|
valid_dl: torch.utils.data.DataLoader,
|
|
tb_writer: Optional[SummaryWriter] = None,
|
|
world_size: int = 1,
|
|
) -> None:
|
|
"""Train the model for one epoch.
|
|
|
|
The training loss from the mean of all frames is saved in
|
|
`params.train_loss`. It runs the validation process every
|
|
`params.valid_interval` batches.
|
|
|
|
Args:
|
|
params:
|
|
It is returned by :func:`get_params`.
|
|
model:
|
|
The model for training.
|
|
optimizer:
|
|
The optimizer we are using.
|
|
graph_compiler:
|
|
It is used to convert transcripts to FSAs.
|
|
train_dl:
|
|
Dataloader for the training dataset.
|
|
valid_dl:
|
|
Dataloader for the validation dataset.
|
|
tb_writer:
|
|
Writer to write log messages to tensorboard.
|
|
world_size:
|
|
Number of nodes in DDP training. If it is 1, DDP is disabled.
|
|
"""
|
|
model.train()
|
|
|
|
tot_loss = MetricsTracker()
|
|
|
|
for batch_idx, batch in enumerate(train_dl):
|
|
params.batch_idx_train += 1
|
|
batch_size = len(batch["supervisions"]["text"])
|
|
|
|
loss, loss_info = compute_loss(
|
|
params=params,
|
|
model=model,
|
|
batch=batch,
|
|
graph_compiler=graph_compiler,
|
|
is_training=True,
|
|
)
|
|
# summary stats.
|
|
tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info
|
|
|
|
optimizer.zero_grad()
|
|
loss.backward()
|
|
clip_grad_norm_(model.parameters(), 5.0, 2.0)
|
|
optimizer.step()
|
|
|
|
if batch_idx % params.log_interval == 0:
|
|
logging.info(
|
|
f"Epoch {params.cur_epoch}, "
|
|
f"batch {batch_idx}, loss[{loss_info}], "
|
|
f"tot_loss[{tot_loss}], batch size: {batch_size}"
|
|
)
|
|
if batch_idx % params.log_interval == 0:
|
|
|
|
if tb_writer is not None:
|
|
loss_info.write_summary(
|
|
tb_writer, "train/current_", params.batch_idx_train
|
|
)
|
|
tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train)
|
|
|
|
if batch_idx > 0 and batch_idx % params.valid_interval == 0:
|
|
valid_info = compute_validation_loss(
|
|
params=params,
|
|
model=model,
|
|
graph_compiler=graph_compiler,
|
|
valid_dl=valid_dl,
|
|
world_size=world_size,
|
|
)
|
|
model.train()
|
|
logging.info(f"Epoch {params.cur_epoch}, validation {valid_info}")
|
|
if tb_writer is not None:
|
|
valid_info.write_summary(
|
|
tb_writer,
|
|
"train/valid_",
|
|
params.batch_idx_train,
|
|
)
|
|
|
|
loss_value = tot_loss["loss"] / tot_loss["frames"]
|
|
params.train_loss = loss_value
|
|
|
|
if params.train_loss < params.best_train_loss:
|
|
params.best_train_epoch = params.cur_epoch
|
|
params.best_train_loss = params.train_loss
|
|
|
|
|
|
def run(rank, world_size, args):
|
|
"""
|
|
Args:
|
|
rank:
|
|
It is a value between 0 and `world_size-1`, which is
|
|
passed automatically by `mp.spawn()` in :func:`main`.
|
|
The node with rank 0 is responsible for saving checkpoint.
|
|
world_size:
|
|
Number of GPUs for DDP training.
|
|
args:
|
|
The return value of get_parser().parse_args()
|
|
"""
|
|
params = get_params()
|
|
params.update(vars(args))
|
|
params["env_info"] = get_env_info()
|
|
|
|
fix_random_seed(params.seed)
|
|
if world_size > 1:
|
|
setup_dist(rank, world_size, params.master_port)
|
|
|
|
setup_logger(f"{params.exp_dir}/log/log-train")
|
|
logging.info("Training started")
|
|
logging.info(params)
|
|
|
|
if args.tensorboard and rank == 0:
|
|
tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard")
|
|
else:
|
|
tb_writer = None
|
|
|
|
lexicon = Lexicon(params.lang_dir)
|
|
max_phone_id = max(lexicon.tokens)
|
|
|
|
device = torch.device("cpu")
|
|
if torch.cuda.is_available():
|
|
device = torch.device("cuda", rank)
|
|
logging.info(f"device: {device}")
|
|
|
|
graph_compiler = CtcTrainingGraphCompiler(lexicon=lexicon, device=device)
|
|
|
|
model = Tdnn(
|
|
num_features=params.feature_dim,
|
|
num_classes=max_phone_id + 1, # +1 for the blank symbol
|
|
)
|
|
|
|
checkpoints = load_checkpoint_if_available(params=params, model=model)
|
|
|
|
model.to(device)
|
|
if world_size > 1:
|
|
model = DDP(model, device_ids=[rank])
|
|
|
|
optimizer = optim.SGD(
|
|
model.parameters(),
|
|
lr=params.lr,
|
|
weight_decay=params.weight_decay,
|
|
)
|
|
|
|
if checkpoints:
|
|
optimizer.load_state_dict(checkpoints["optimizer"])
|
|
|
|
yes_no = YesNoAsrDataModule(args)
|
|
train_dl = yes_no.train_dataloaders()
|
|
|
|
# There are only 60 waves: 30 files are used for training
|
|
# and the remaining 30 files are used for testing.
|
|
# We use test data as validation.
|
|
valid_dl = yes_no.test_dataloaders()
|
|
|
|
for epoch in range(params.start_epoch, params.num_epochs):
|
|
fix_random_seed(params.seed + epoch)
|
|
train_dl.sampler.set_epoch(epoch)
|
|
|
|
if tb_writer is not None:
|
|
tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train)
|
|
|
|
params.cur_epoch = epoch
|
|
|
|
train_one_epoch(
|
|
params=params,
|
|
model=model,
|
|
optimizer=optimizer,
|
|
graph_compiler=graph_compiler,
|
|
train_dl=train_dl,
|
|
valid_dl=valid_dl,
|
|
tb_writer=tb_writer,
|
|
world_size=world_size,
|
|
)
|
|
|
|
save_checkpoint(
|
|
params=params,
|
|
model=model,
|
|
optimizer=optimizer,
|
|
scheduler=None,
|
|
rank=rank,
|
|
)
|
|
|
|
logging.info("Done!")
|
|
if world_size > 1:
|
|
torch.distributed.barrier()
|
|
cleanup_dist()
|
|
|
|
|
|
def main():
|
|
parser = get_parser()
|
|
YesNoAsrDataModule.add_arguments(parser)
|
|
args = parser.parse_args()
|
|
|
|
world_size = args.world_size
|
|
assert world_size >= 1
|
|
if world_size > 1:
|
|
mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True)
|
|
else:
|
|
run(rank=0, world_size=1, args=args)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|