mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
159 lines
3.9 KiB
Python
Executable File
159 lines
3.9 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
|
|
"""
|
|
This file is for exporting trained models to onnx.
|
|
|
|
Usage:
|
|
|
|
./tdnn/export_onnx.py \
|
|
--epoch 14 \
|
|
--avg 2
|
|
|
|
The above command generates the following two files:
|
|
- ./exp/model-epoch-14-avg-2.onnx
|
|
- ./exp/model-epoch-14-avg-2.int8.onnx
|
|
|
|
See ./tdnn/onnx_pretrained.py for how to use them.
|
|
"""
|
|
|
|
import argparse
|
|
import logging
|
|
from typing import Dict
|
|
|
|
import onnx
|
|
import torch
|
|
from model import Tdnn
|
|
from onnxruntime.quantization import QuantType, quantize_dynamic
|
|
from train import get_params
|
|
|
|
from icefall.checkpoint import average_checkpoints, load_checkpoint
|
|
from icefall.lexicon import Lexicon
|
|
|
|
|
|
def get_parser():
|
|
parser = argparse.ArgumentParser(
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--epoch",
|
|
type=int,
|
|
default=14,
|
|
help="It specifies the checkpoint to use for decoding."
|
|
"Note: Epoch counts from 0.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--avg",
|
|
type=int,
|
|
default=2,
|
|
help="Number of checkpoints to average. Automatically select "
|
|
"consecutive checkpoints before the checkpoint specified by "
|
|
"'--epoch'. ",
|
|
)
|
|
|
|
return parser
|
|
|
|
|
|
def add_meta_data(filename: str, meta_data: Dict[str, str]):
|
|
"""Add meta data to an ONNX model. It is changed in-place.
|
|
|
|
Args:
|
|
filename:
|
|
Filename of the ONNX model to be changed.
|
|
meta_data:
|
|
Key-value pairs.
|
|
"""
|
|
model = onnx.load(filename)
|
|
for key, value in meta_data.items():
|
|
meta = model.metadata_props.add()
|
|
meta.key = key
|
|
meta.value = str(value)
|
|
|
|
onnx.save(model, filename)
|
|
|
|
|
|
@torch.no_grad()
|
|
def main():
|
|
args = get_parser().parse_args()
|
|
|
|
params = get_params()
|
|
params.update(vars(args))
|
|
|
|
logging.info(params)
|
|
|
|
lexicon = Lexicon(params.lang_dir)
|
|
max_token_id = max(lexicon.tokens)
|
|
|
|
model = Tdnn(
|
|
num_features=params.feature_dim,
|
|
num_classes=max_token_id + 1, # +1 for the blank symbol
|
|
)
|
|
if params.avg == 1:
|
|
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
|
else:
|
|
start = params.epoch - params.avg + 1
|
|
filenames = []
|
|
for i in range(start, params.epoch + 1):
|
|
if start >= 0:
|
|
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
|
logging.info(f"averaging {filenames}")
|
|
model.load_state_dict(average_checkpoints(filenames))
|
|
|
|
model.to("cpu")
|
|
model.eval()
|
|
|
|
N = 1
|
|
T = 100
|
|
C = params.feature_dim
|
|
x = torch.rand(N, T, C)
|
|
|
|
opset_version = 13
|
|
onnx_filename = f"{params.exp_dir}/model-epoch-{params.epoch}-avg-{params.avg}.onnx"
|
|
torch.onnx.export(
|
|
model,
|
|
x,
|
|
onnx_filename,
|
|
verbose=False,
|
|
opset_version=opset_version,
|
|
input_names=["x"],
|
|
output_names=["log_prob"],
|
|
dynamic_axes={
|
|
"x": {0: "N", 1: "T"},
|
|
"log_prob": {0: "N", 1: "T"},
|
|
},
|
|
)
|
|
|
|
logging.info(f"Saved to {onnx_filename}")
|
|
meta_data = {
|
|
"model_type": "tdnn",
|
|
"version": "1",
|
|
"model_author": "k2-fsa",
|
|
"comment": "non-streaming tdnn for the yesno recipe",
|
|
"vocab_size": max_token_id + 1,
|
|
}
|
|
|
|
logging.info(f"meta_data: {meta_data}")
|
|
|
|
add_meta_data(filename=onnx_filename, meta_data=meta_data)
|
|
|
|
logging.info("Generate int8 quantization models")
|
|
onnx_filename_int8 = (
|
|
f"{params.exp_dir}/model-epoch-{params.epoch}-avg-{params.avg}.int8.onnx"
|
|
)
|
|
|
|
quantize_dynamic(
|
|
model_input=onnx_filename,
|
|
model_output=onnx_filename_int8,
|
|
op_types_to_quantize=["MatMul"],
|
|
weight_type=QuantType.QInt8,
|
|
)
|
|
logging.info(f"Saved to {onnx_filename_int8}")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
|
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
|
main()
|