icefall/egs/yesno/ASR/tdnn/export_onnx.py
2023-08-12 16:59:06 +08:00

159 lines
3.9 KiB
Python
Executable File

#!/usr/bin/env python3
"""
This file is for exporting trained models to onnx.
Usage:
./tdnn/export_onnx.py \
--epoch 14 \
--avg 2
The above command generates the following two files:
- ./exp/model-epoch-14-avg-2.onnx
- ./exp/model-epoch-14-avg-2.int8.onnx
See ./tdnn/onnx_pretrained.py for how to use them.
"""
import argparse
import logging
from typing import Dict
import onnx
import torch
from model import Tdnn
from onnxruntime.quantization import QuantType, quantize_dynamic
from train import get_params
from icefall.checkpoint import average_checkpoints, load_checkpoint
from icefall.lexicon import Lexicon
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--epoch",
type=int,
default=14,
help="It specifies the checkpoint to use for decoding."
"Note: Epoch counts from 0.",
)
parser.add_argument(
"--avg",
type=int,
default=2,
help="Number of checkpoints to average. Automatically select "
"consecutive checkpoints before the checkpoint specified by "
"'--epoch'. ",
)
return parser
def add_meta_data(filename: str, meta_data: Dict[str, str]):
"""Add meta data to an ONNX model. It is changed in-place.
Args:
filename:
Filename of the ONNX model to be changed.
meta_data:
Key-value pairs.
"""
model = onnx.load(filename)
for key, value in meta_data.items():
meta = model.metadata_props.add()
meta.key = key
meta.value = str(value)
onnx.save(model, filename)
@torch.no_grad()
def main():
args = get_parser().parse_args()
params = get_params()
params.update(vars(args))
logging.info(params)
lexicon = Lexicon(params.lang_dir)
max_token_id = max(lexicon.tokens)
model = Tdnn(
num_features=params.feature_dim,
num_classes=max_token_id + 1, # +1 for the blank symbol
)
if params.avg == 1:
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
else:
start = params.epoch - params.avg + 1
filenames = []
for i in range(start, params.epoch + 1):
if start >= 0:
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
logging.info(f"averaging {filenames}")
model.load_state_dict(average_checkpoints(filenames))
model.to("cpu")
model.eval()
N = 1
T = 100
C = params.feature_dim
x = torch.rand(N, T, C)
opset_version = 13
onnx_filename = f"{params.exp_dir}/model-epoch-{params.epoch}-avg-{params.avg}.onnx"
torch.onnx.export(
model,
x,
onnx_filename,
verbose=False,
opset_version=opset_version,
input_names=["x"],
output_names=["log_prob"],
dynamic_axes={
"x": {0: "N", 1: "T"},
"log_prob": {0: "N", 1: "T"},
},
)
logging.info(f"Saved to {onnx_filename}")
meta_data = {
"model_type": "tdnn",
"version": "1",
"model_author": "k2-fsa",
"comment": "non-streaming tdnn for the yesno recipe",
"vocab_size": max_token_id + 1,
}
logging.info(f"meta_data: {meta_data}")
add_meta_data(filename=onnx_filename, meta_data=meta_data)
logging.info("Generate int8 quantization models")
onnx_filename_int8 = (
f"{params.exp_dir}/model-epoch-{params.epoch}-avg-{params.avg}.int8.onnx"
)
quantize_dynamic(
model_input=onnx_filename,
model_output=onnx_filename_int8,
op_types_to_quantize=["MatMul"],
weight_type=QuantType.QInt8,
)
logging.info(f"Saved to {onnx_filename_int8}")
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
main()