icefall/egs/voxpopuli/ASR/prepare.sh
Karel Vesely 59c943878f
add the voxpopuli recipe (#1374)
* add the `voxpopuli` recipe

- this is the data preparation
- there is no ASR training and no results

* update the PR#1374 (feedback from @csukuangfj)

- fixing .py headers and docstrings
- removing BUT specific parts of `prepare.sh`
- adding assert `num_jobs >= num_workers` to `compute_fbank.py`
- narrowing list of languages
  (let's limit to ASR sets with transcripts for now)
- added links to `README.md`
- extending `text_from_manifest.py`
2023-11-16 14:38:31 +08:00

258 lines
7.9 KiB
Bash
Executable File

#!/usr/bin/env bash
# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674
export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
set -euxo pipefail
nj=20
stage=-1
stop_stage=100
# We assume dl_dir (download dir) contains the following
# directories and files. If not, they will be downloaded
# by this script automatically.
#
# - $dl_dir/voxpopuli/raw_audios/$lang/$year
# This directory contains *.ogg files with audio downloaded and extracted from archives:
# https://dl.fbaipublicfiles.com/voxpopuli/audios/${lang}_${year}.tar
#
# - Note: the voxpopuli transcripts are downloaded to a ${tmp} folder
# as part of `lhotse prepare voxpopuli` from:
# https://dl.fbaipublicfiles.com/voxpopuli/annotations/asr/asr_${lang}.tsv.gz
#
# - $dl_dir/musan
# This directory contains the following directories downloaded from
# http://www.openslr.org/17/
#
# - music
# - noise
# - speech
dl_dir=$PWD/download
#dl_dir=/mnt/matylda6/szoke/EU-ASR/DATA # BUT
musan_dir=${dl_dir}/musan
#musan_dir=/mnt/matylda2/data/MUSAN # BUT
# Choose value from ASR_LANGUAGES:
#
# [ "en", "de", "fr", "es", "pl", "it", "ro", "hu", "cs", "nl", "fi", "hr",
# "sk", "sl", "et", "lt" ]
#
# See ASR_LANGUAGES in:
# https://github.com/lhotse-speech/lhotse/blob/c5f26afd100885b86e4244eeb33ca1986f3fa923/lhotse/recipes/voxpopuli.py#L54C4-L54C4
lang=en
task=asr
. shared/parse_options.sh || exit 1
# vocab size for sentence piece models.
# It will generate data/${lang}/lang_bpe_xxx,
# data/${lang}/lang_bpe_yyy if the array contains xxx, yyy
vocab_sizes=(
# 5000
# 2000
# 1000
500
)
# All files generated by this script are saved in "data/${lang}".
# You can safely remove "data/${lang}" and rerun this script to regenerate it.
mkdir -p data/${lang}
log() {
# This function is from espnet
local fname=${BASH_SOURCE[1]##*/}
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
}
log "dl_dir: $dl_dir"
log "musan_dir: $musan_dir"
log "task: $task, lang: $lang"
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
log "Stage 0: Download data"
# If you have pre-downloaded it to /path/to/$release,
# you can create a symlink
#
# ln -sfv /path/to/$release $dl_dir/$release
#
if [ ! -d $dl_dir/voxpopuli/raw_audios/${lang} ]; then
lhotse download voxpopuli --subset $lang $dl_dir/voxpopuli
fi
# If you have pre-downloaded it to /path/to/musan,
# you can create a symlink
#
# ln -sfv /path/to/musan $dl_dir/
#
if [ ! -d $musan_dir/musan ]; then
lhotse download musan $musan_dir
fi
fi
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
log "Stage 1: Prepare VoxPopuli manifest"
# We assume that you have downloaded the VoxPopuli corpus
# to $dl_dir/voxpopuli
if [ ! -e data/manifests/.voxpopuli-${task}-${lang}.done ]; then
# Warning : it requires Internet connection (it downloads transcripts to ${tmpdir})
lhotse prepare voxpopuli --task asr --lang $lang -j $nj $dl_dir/voxpopuli data/manifests
touch data/manifests/.voxpopuli-${task}-${lang}.done
fi
fi
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
log "Stage 2: Prepare musan manifest"
# We assume that you have downloaded the musan corpus
# to data/musan
mkdir -p data/manifests
if [ ! -e data/manifests/.musan.done ]; then
#lhotse prepare musan $dl_dir/musan data/manifests
lhotse prepare musan $musan_dir/musan data/manifests
touch data/manifests/.musan.done
fi
fi
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
log "Stage 3: Preprocess VoxPopuli manifest"
mkdir -p data/fbank
if [ ! -e data/fbank/.voxpopuli-${task}-${lang}-preprocess_complete ]; then
# recordings + supervisions -> cutset
./local/preprocess_voxpopuli.py --task $task --lang $lang \
--use-original-text True
touch data/fbank/.voxpopuli-${task}-${lang}-preprocess_complete
fi
fi
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
log "Stage 4: Compute fbank for dev and test subsets of VoxPopuli"
mkdir -p data/fbank
for dataset in "dev" "test"; do
if [ ! -e data/fbank/.voxpopuli-${task}-${lang}-${dataset}.done ]; then
./local/compute_fbank.py --src-dir data/fbank --output-dir data/fbank \
--num-jobs 50 --num-workers ${nj} \
--prefix "voxpopuli-${task}-${lang}" \
--dataset ${dataset} \
--trim-to-supervisions True
touch data/fbank/.voxpopuli-${task}-${lang}-${dataset}.done
fi
done
fi
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
log "Stage 5: Compute fbank for train set of VoxPopuli"
if [ ! -e data/fbank/.voxpopuli-${task}-${lang}-train.done ]; then
./local/compute_fbank.py --src-dir data/fbank --output-dir data/fbank \
--num-jobs 100 --num-workers ${nj} \
--prefix "voxpopuli-${task}-${lang}" \
--dataset train \
--trim-to-supervisions True \
--speed-perturb True
touch data/fbank/.voxpopuli-${task}-${lang}-train.done
fi
fi
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
log "Stage 6: Validate fbank manifests for VoxPopuli"
for dataset in "dev" "test" "train"; do
mkdir -p data/fbank/log/
./local/validate_cutset_manifest.py \
data/fbank/voxpopuli-asr-en_cuts_${dataset}.jsonl.gz \
2>&1 | tee data/fbank/log/validate_voxpopuli-asr-en_cuts_${dataset}.log
done
fi
if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
log "Stage 7: Compute fbank for musan"
mkdir -p data/fbank
if [ ! -e data/fbank/.musan.done ]; then
./local/compute_fbank_musan.py
touch data/fbank/.musan.done
fi
fi
if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then
log "Stage 8: Prepare BPE based lang"
for vocab_size in ${vocab_sizes[@]}; do
lang_dir=data/lang_bpe_${vocab_size}_${lang}
mkdir -p $lang_dir
if [ ! -f $lang_dir/transcript_words.txt ]; then
log "Generate data for BPE training"
file=$(
find "data/fbank/voxpopuli-${task}-${lang}_cuts_train.jsonl.gz"
)
local/text_from_manifest.py $file >$lang_dir/transcript_words.txt
# gunzip -c ${file} | awk -F '"' '{print $30}' > $lang_dir/transcript_words.txt
# Ensure space only appears once
#sed -i 's/\t/ /g' $lang_dir/transcript_words.txt
#sed -i 's/[ ][ ]*/ /g' $lang_dir/transcript_words.txt
fi
if [ ! -f $lang_dir/words.txt ]; then
cat $lang_dir/transcript_words.txt | sed 's/ /\n/g' \
| sort -u | sed '/^$/d' > $lang_dir/words.txt
(echo '!SIL'; echo '<SPOKEN_NOISE>'; echo '<UNK>'; ) |
cat - $lang_dir/words.txt | sort | uniq | awk '
BEGIN {
print "<eps> 0";
}
{
if ($1 == "<s>") {
print "<s> is in the vocabulary!" | "cat 1>&2"
exit 1;
}
if ($1 == "</s>") {
print "</s> is in the vocabulary!" | "cat 1>&2"
exit 1;
}
printf("%s %d\n", $1, NR);
}
END {
printf("#0 %d\n", NR+1);
printf("<s> %d\n", NR+2);
printf("</s> %d\n", NR+3);
}' > $lang_dir/words || exit 1;
mv $lang_dir/words $lang_dir/words.txt
fi
if [ ! -f $lang_dir/bpe.model ]; then
./local/train_bpe_model.py \
--lang-dir $lang_dir \
--vocab-size $vocab_size \
--transcript $lang_dir/transcript_words.txt
fi
if [ ! -f $lang_dir/L_disambig.pt ]; then
./local/prepare_lang_bpe.py --lang-dir $lang_dir
log "Validating $lang_dir/lexicon.txt"
./local/validate_bpe_lexicon.py \
--lexicon $lang_dir/lexicon.txt \
--bpe-model $lang_dir/bpe.model
fi
if [ ! -f $lang_dir/L.fst ]; then
log "Converting L.pt to L.fst"
./shared/convert-k2-to-openfst.py \
--olabels aux_labels \
$lang_dir/L.pt \
$lang_dir/L.fst
fi
if [ ! -f $lang_dir/L_disambig.fst ]; then
log "Converting L_disambig.pt to L_disambig.fst"
./shared/convert-k2-to-openfst.py \
--olabels aux_labels \
$lang_dir/L_disambig.pt \
$lang_dir/L_disambig.fst
fi
done
fi