mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
* prepare.sh: restore working directory after git lfs pull * set execute permisons on python scripts called by prepare.sh
160 lines
4.3 KiB
Bash
160 lines
4.3 KiB
Bash
#!/usr/bin/env bash
|
|
|
|
# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674
|
|
export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
|
|
|
|
set -eou pipefail
|
|
|
|
num_phones=39
|
|
# Here we use num_phones=39 for modeling
|
|
|
|
nj=15
|
|
stage=-1
|
|
stop_stage=100
|
|
|
|
# We assume dl_dir (download dir) contains the following
|
|
# directories and files. If not, they will be downloaded
|
|
# by this script automatically.
|
|
#
|
|
# - $dl_dir/timit
|
|
# You can find data, train_data.csv, test_data.csv, etc, inside it.
|
|
# You can download them from https://data.deepai.org/timit.zip
|
|
#
|
|
# - $dl_dir/lm
|
|
# This directory contains the language model(LM) downloaded from
|
|
# https://huggingface.co/luomingshuang/timit_lm, and the LM is based
|
|
# on 39 phones. About how to get these LM files, you can know it
|
|
# from https://github.com/luomingshuang/Train_LM_with_kaldilm.
|
|
#
|
|
# - lm_3_gram.arpa
|
|
# - lm_4_gram.arpa
|
|
#
|
|
# - $dl_dir/musan
|
|
# This directory contains the following directories downloaded from
|
|
# http://www.openslr.org/17/
|
|
#
|
|
# - music
|
|
# - noise
|
|
# - speech
|
|
dl_dir=$PWD/download
|
|
splits_dir=$PWD/splits_dir
|
|
|
|
. shared/parse_options.sh || exit 1
|
|
|
|
# All files generated by this script are saved in "data".
|
|
# You can safely remove "data" and rerun this script to regenerate it.
|
|
mkdir -p data
|
|
|
|
log() {
|
|
# This function is from espnet
|
|
local fname=${BASH_SOURCE[1]##*/}
|
|
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
|
|
}
|
|
|
|
log "dl_dir: $dl_dir"
|
|
|
|
if [ $stage -le -1 ] && [ $stop_stage -ge -1 ]; then
|
|
log "Stage -1: Download LM"
|
|
# We assume that you have installed the git-lfs, if not, you could install it
|
|
# using: `sudo apt-get install git-lfs && git-lfs install`
|
|
[ ! -e $dl_dir/lm ] && mkdir -p $dl_dir/lm
|
|
git clone https://huggingface.co/luomingshuang/timit_lm $dl_dir/lm
|
|
pushd $dl_dir/lm
|
|
git lfs pull
|
|
popd
|
|
fi
|
|
|
|
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
|
|
log "Stage 0: Download data"
|
|
|
|
# If you have pre-downloaded it to /path/to/timit,
|
|
# you can create a symlink
|
|
#
|
|
# ln -sfv /path/to/timit $dl_dir/timit
|
|
#
|
|
if [ ! -d $dl_dir/timit ]; then
|
|
lhotse download timit $dl_dir
|
|
fi
|
|
|
|
# If you have pre-downloaded it to /path/to/musan,
|
|
# you can create a symlink
|
|
#
|
|
# ln -sfv /path/to/musan $dl_dir/
|
|
#
|
|
if [ ! -d $dl_dir/musan ]; then
|
|
lhotse download musan $dl_dir
|
|
fi
|
|
fi
|
|
|
|
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
|
|
log "Stage 1: Prepare timit manifest"
|
|
# We assume that you have downloaded the timit corpus
|
|
# to $dl_dir/timit
|
|
mkdir -p data/manifests
|
|
lhotse prepare timit -p $num_phones -j $nj $dl_dir/timit/data data/manifests
|
|
fi
|
|
|
|
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
|
|
log "Stage 2: Prepare musan manifest"
|
|
# We assume that you have downloaded the musan corpus
|
|
# to data/musan
|
|
mkdir -p data/manifests
|
|
lhotse prepare musan $dl_dir/musan data/manifests
|
|
fi
|
|
|
|
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
|
|
log "Stage 3: Compute fbank for timit"
|
|
mkdir -p data/fbank
|
|
./local/compute_fbank_timit.py
|
|
fi
|
|
|
|
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
|
|
log "Stage 4: Compute fbank for musan"
|
|
mkdir -p data/fbank
|
|
./local/compute_fbank_musan.py
|
|
fi
|
|
|
|
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
|
|
log "Stage 5: Prepare phone based lang"
|
|
lang_dir=data/lang_phone
|
|
mkdir -p $lang_dir
|
|
|
|
./local/prepare_lexicon.py \
|
|
--manifests-dir data/manifests \
|
|
--lang-dir $lang_dir
|
|
|
|
if [ ! -f $lang_dir/L_disambig.pt ]; then
|
|
./local/prepare_lang.py --lang-dir $lang_dir
|
|
fi
|
|
fi
|
|
|
|
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
|
|
log "Stage 6: Prepare G"
|
|
# We assume you have installed kaldilm, if not, please install
|
|
# it using: pip install kaldilm
|
|
|
|
mkdir -p data/lm
|
|
if [ ! -f data/lm/G_3_gram.fst.txt ]; then
|
|
# It is used in building HLG
|
|
python3 -m kaldilm \
|
|
--read-symbol-table="data/lang_phone/words.txt" \
|
|
--disambig-symbol='#0' \
|
|
--max-order=3 \
|
|
$dl_dir/lm/lm_3_gram.arpa > data/lm/G_3_gram.fst.txt
|
|
fi
|
|
|
|
if [ ! -f data/lm/G_4_gram.fst.txt ]; then
|
|
# It is used for LM rescoring
|
|
python3 -m kaldilm \
|
|
--read-symbol-table="data/lang_phone/words.txt" \
|
|
--disambig-symbol='#0' \
|
|
--max-order=4 \
|
|
$dl_dir/lm/lm_4_gram.arpa > data/lm/G_4_gram.fst.txt
|
|
fi
|
|
fi
|
|
|
|
if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
|
|
log "Stage 7: Compile HLG"
|
|
./local/compile_hlg.py --lang-dir data/lang_phone
|
|
fi
|