2022-11-17 09:42:17 -05:00

540 lines
15 KiB
Python

# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang
# Mingshuang Luo)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from typing import Dict, List, Optional
import torch
from model import Transducer
def greedy_search(
model: Transducer, encoder_out: torch.Tensor, max_sym_per_frame: int
) -> List[int]:
"""
Args:
model:
An instance of `Transducer`.
encoder_out:
A tensor of shape (N, T, C) from the encoder. Support only N==1 for now.
max_sym_per_frame:
Maximum number of symbols per frame. If it is set to 0, the WER
would be 100%.
Returns:
Return the decoded result.
"""
assert encoder_out.ndim == 3
# support only batch_size == 1 for now
assert encoder_out.size(0) == 1, encoder_out.size(0)
blank_id = model.decoder.blank_id
unk_id = model.decoder.unk_id
context_size = model.decoder.context_size
device = model.device
decoder_input = torch.tensor(
[blank_id] * context_size, device=device, dtype=torch.int64
).reshape(1, context_size)
decoder_out = model.decoder(decoder_input, need_pad=False)
T = encoder_out.size(1)
t = 0
hyp = [blank_id] * context_size
# Maximum symbols per utterance.
max_sym_per_utt = 1000
# symbols per frame
sym_per_frame = 0
# symbols per utterance decoded so far
sym_per_utt = 0
encoder_out_len = torch.tensor([1])
decoder_out_len = torch.tensor([1])
while t < T and sym_per_utt < max_sym_per_utt:
if sym_per_frame >= max_sym_per_frame:
sym_per_frame = 0
t += 1
continue
# fmt: off
current_encoder_out = encoder_out[:, t:t+1, :]
# fmt: on
logits = model.joiner(
current_encoder_out, decoder_out, encoder_out_len, decoder_out_len
)
# logits is (1, 1, 1, vocab_size)
y = logits.argmax().item()
if y != blank_id and y != unk_id:
hyp.append(y)
decoder_input = torch.tensor([hyp[-context_size:]], device=device).reshape(
1, context_size
)
decoder_out = model.decoder(decoder_input, need_pad=False)
sym_per_utt += 1
sym_per_frame += 1
else:
sym_per_frame = 0
t += 1
hyp = hyp[context_size:] # remove blanks
return hyp
@dataclass
class Hypothesis:
# The predicted tokens so far.
# Newly predicted tokens are appended to `ys`.
ys: List[int]
# The log prob of ys.
# It contains only one entry.
log_prob: torch.Tensor
@property
def key(self) -> str:
"""Return a string representation of self.ys"""
return "_".join(map(str, self.ys))
class HypothesisList(object):
def __init__(self, data: Optional[Dict[str, Hypothesis]] = None) -> None:
"""
Args:
data:
A dict of Hypotheses. Its key is its `value.key`.
"""
if data is None:
self._data = {}
else:
self._data = data
@property
def data(self) -> Dict[str, Hypothesis]:
return self._data
def add(self, hyp: Hypothesis) -> None:
"""Add a Hypothesis to `self`.
If `hyp` already exists in `self`, its probability is updated using
`log-sum-exp` with the existed one.
Args:
hyp:
The hypothesis to be added.
"""
key = hyp.key
if key in self:
old_hyp = self._data[key] # shallow copy
torch.logaddexp(old_hyp.log_prob, hyp.log_prob, out=old_hyp.log_prob)
else:
self._data[key] = hyp
def get_most_probable(self, length_norm: bool = False) -> Hypothesis:
"""Get the most probable hypothesis, i.e., the one with
the largest `log_prob`.
Args:
length_norm:
If True, the `log_prob` of a hypothesis is normalized by the
number of tokens in it.
Returns:
Return the hypothesis that has the largest `log_prob`.
"""
if length_norm:
return max(self._data.values(), key=lambda hyp: hyp.log_prob / len(hyp.ys))
else:
return max(self._data.values(), key=lambda hyp: hyp.log_prob)
def remove(self, hyp: Hypothesis) -> None:
"""Remove a given hypothesis.
Caution:
`self` is modified **in-place**.
Args:
hyp:
The hypothesis to be removed from `self`.
Note: It must be contained in `self`. Otherwise,
an exception is raised.
"""
key = hyp.key
assert key in self, f"{key} does not exist"
del self._data[key]
def filter(self, threshold: torch.Tensor) -> "HypothesisList":
"""Remove all Hypotheses whose log_prob is less than threshold.
Caution:
`self` is not modified. Instead, a new HypothesisList is returned.
Returns:
Return a new HypothesisList containing all hypotheses from `self`
with `log_prob` being greater than the given `threshold`.
"""
ans = HypothesisList()
for _, hyp in self._data.items():
if hyp.log_prob > threshold:
ans.add(hyp) # shallow copy
return ans
def topk(self, k: int) -> "HypothesisList":
"""Return the top-k hypothesis."""
hyps = list(self._data.items())
hyps = sorted(hyps, key=lambda h: h[1].log_prob, reverse=True)[:k]
ans = HypothesisList(dict(hyps))
return ans
def __contains__(self, key: str):
return key in self._data
def __iter__(self):
return iter(self._data.values())
def __len__(self) -> int:
return len(self._data)
def __str__(self) -> str:
s = []
for key in self:
s.append(key)
return ", ".join(s)
def run_decoder(
ys: List[int],
model: Transducer,
decoder_cache: Dict[str, torch.Tensor],
) -> torch.Tensor:
"""Run the neural decoder model for a given hypothesis.
Args:
ys:
The current hypothesis.
model:
The transducer model.
decoder_cache:
Cache to save computations.
Returns:
Return a 1-D tensor of shape (decoder_out_dim,) containing
output of `model.decoder`.
"""
context_size = model.decoder.context_size
key = "_".join(map(str, ys[-context_size:]))
if key in decoder_cache:
return decoder_cache[key]
device = model.device
decoder_input = torch.tensor([ys[-context_size:]], device=device).reshape(
1, context_size
)
decoder_out = model.decoder(decoder_input, need_pad=False)
decoder_cache[key] = decoder_out
return decoder_out
def run_joiner(
key: str,
model: Transducer,
encoder_out: torch.Tensor,
decoder_out: torch.Tensor,
encoder_out_len: torch.Tensor,
decoder_out_len: torch.Tensor,
joint_cache: Dict[str, torch.Tensor],
):
"""Run the joint network given outputs from the encoder and decoder.
Args:
key:
A key into the `joint_cache`.
model:
The transducer model.
encoder_out:
A tensor of shape (1, 1, encoder_out_dim).
decoder_out:
A tensor of shape (1, 1, decoder_out_dim).
encoder_out_len:
A tensor with value [1].
decoder_out_len:
A tensor with value [1].
joint_cache:
A dict to save computations.
Returns:
Return a tensor from the output of log-softmax.
Its shape is (vocab_size,).
"""
if key in joint_cache:
return joint_cache[key]
logits = model.joiner(
encoder_out,
decoder_out,
encoder_out_len,
decoder_out_len,
)
# TODO(fangjun): Scale the blank posterior
log_prob = logits.log_softmax(dim=-1)
# log_prob is (1, 1, 1, vocab_size)
log_prob = log_prob.squeeze()
# Now log_prob is (vocab_size,)
joint_cache[key] = log_prob
return log_prob
def modified_beam_search(
model: Transducer,
encoder_out: torch.Tensor,
beam: int = 4,
) -> List[int]:
"""It limits the maximum number of symbols per frame to 1.
Args:
model:
An instance of `Transducer`.
encoder_out:
A tensor of shape (N, T, C) from the encoder. Support only N==1 for now.
beam:
Beam size.
Returns:
Return the decoded result.
"""
assert encoder_out.ndim == 3
# support only batch_size == 1 for now
assert encoder_out.size(0) == 1, encoder_out.size(0)
blank_id = model.decoder.blank_id
unk_id = model.decoder.unk_id
context_size = model.decoder.context_size
device = model.device
decoder_input = torch.tensor([blank_id] * context_size, device=device).reshape(
1, context_size
)
decoder_out = model.decoder(decoder_input, need_pad=False)
T = encoder_out.size(1)
B = HypothesisList()
B.add(
Hypothesis(
ys=[blank_id] * context_size,
log_prob=torch.zeros(1, dtype=torch.float32, device=device),
)
)
encoder_out_len = torch.tensor([1])
decoder_out_len = torch.tensor([1])
for t in range(T):
# fmt: off
current_encoder_out = encoder_out[:, t:t+1, :]
# current_encoder_out is of shape (1, 1, encoder_out_dim)
# fmt: on
A = list(B)
B = HypothesisList()
ys_log_probs = torch.cat([hyp.log_prob.reshape(1, 1) for hyp in A])
# ys_log_probs is of shape (num_hyps, 1)
decoder_input = torch.tensor(
[hyp.ys[-context_size:] for hyp in A],
device=device,
)
# decoder_input is of shape (num_hyps, context_size)
decoder_out = model.decoder(decoder_input, need_pad=False)
# decoder_output is of shape (num_hyps, 1, decoder_output_dim)
current_encoder_out = current_encoder_out.expand(decoder_out.size(0), 1, -1)
logits = model.joiner(
current_encoder_out,
decoder_out,
encoder_out_len.expand(decoder_out.size(0)),
decoder_out_len.expand(decoder_out.size(0)),
)
# logits is of shape (num_hyps, vocab_size)
log_probs = logits.log_softmax(dim=-1)
log_probs.add_(ys_log_probs)
log_probs = log_probs.reshape(-1)
topk_log_probs, topk_indexes = log_probs.topk(beam)
# topk_hyp_indexes are indexes into `A`
topk_hyp_indexes = topk_indexes // logits.size(-1)
topk_token_indexes = topk_indexes % logits.size(-1)
topk_hyp_indexes = topk_hyp_indexes.tolist()
topk_token_indexes = topk_token_indexes.tolist()
for i in range(len(topk_hyp_indexes)):
hyp = A[topk_hyp_indexes[i]]
new_ys = hyp.ys[:]
new_token = topk_token_indexes[i]
if new_token != blank_id and new_token != unk_id:
new_ys.append(new_token)
new_log_prob = topk_log_probs[i]
new_hyp = Hypothesis(ys=new_ys, log_prob=new_log_prob)
B.add(new_hyp)
best_hyp = B.get_most_probable(length_norm=True)
ys = best_hyp.ys[context_size:] # [context_size:] to remove blanks
return ys
def beam_search(
model: Transducer,
encoder_out: torch.Tensor,
beam: int = 4,
) -> List[int]:
"""
It implements Algorithm 1 in https://arxiv.org/pdf/1211.3711.pdf
espnet/nets/beam_search_transducer.py#L247 is used as a reference.
Args:
model:
An instance of `Transducer`.
encoder_out:
A tensor of shape (N, T, C) from the encoder. Support only N==1 for now.
beam:
Beam size.
Returns:
Return the decoded result.
"""
assert encoder_out.ndim == 3
# support only batch_size == 1 for now
assert encoder_out.size(0) == 1, encoder_out.size(0)
blank_id = model.decoder.blank_id
unk_id = model.decoder.unk_id
context_size = model.decoder.context_size
device = model.device
decoder_input = torch.tensor([blank_id] * context_size, device=device).reshape(
1, context_size
)
decoder_out = model.decoder(decoder_input, need_pad=False)
T = encoder_out.size(1)
t = 0
B = HypothesisList()
B.add(
Hypothesis(
ys=[blank_id] * context_size,
log_prob=torch.zeros(1, dtype=torch.float32, device=device),
)
)
max_sym_per_utt = 20000
sym_per_utt = 0
encoder_out_len = torch.tensor([1])
decoder_out_len = torch.tensor([1])
decoder_cache: Dict[str, torch.Tensor] = {}
while t < T and sym_per_utt < max_sym_per_utt:
# fmt: off
current_encoder_out = encoder_out[:, t:t+1, :]
# fmt: on
A = B
B = HypothesisList()
joint_cache: Dict[str, torch.Tensor] = {}
while True:
y_star = A.get_most_probable()
A.remove(y_star)
decoder_out = run_decoder(
ys=y_star.ys, model=model, decoder_cache=decoder_cache
)
key = "_".join(map(str, y_star.ys[-context_size:]))
key += f"-t-{t}"
log_prob = run_joiner(
key=key,
model=model,
encoder_out=current_encoder_out,
decoder_out=decoder_out,
encoder_out_len=encoder_out_len,
decoder_out_len=decoder_out_len,
joint_cache=joint_cache,
)
# First, process the blank symbol
skip_log_prob = log_prob[blank_id]
new_y_star_log_prob = y_star.log_prob + skip_log_prob
# ys[:] returns a copy of ys
B.add(Hypothesis(ys=y_star.ys[:], log_prob=new_y_star_log_prob))
# Second, process other non-blank labels
values, indices = log_prob.topk(beam + 1)
for idx in range(values.size(0)):
i = indices[idx].item()
if i == blank_id or i == unk_id:
continue
new_ys = y_star.ys + [i]
new_log_prob = y_star.log_prob + values[idx]
A.add(Hypothesis(ys=new_ys, log_prob=new_log_prob))
# Check whether B contains more than "beam" elements more probable
# than the most probable in A
A_most_probable = A.get_most_probable()
kept_B = B.filter(A_most_probable.log_prob)
if len(kept_B) >= beam:
B = kept_B.topk(beam)
break
t += 1
best_hyp = B.get_most_probable(length_norm=True)
ys = best_hyp.ys[context_size:] # [context_size:] to remove blanks
return ys