mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
540 lines
15 KiB
Python
540 lines
15 KiB
Python
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang
|
|
# Mingshuang Luo)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from dataclasses import dataclass
|
|
from typing import Dict, List, Optional
|
|
|
|
import torch
|
|
from model import Transducer
|
|
|
|
|
|
def greedy_search(
|
|
model: Transducer, encoder_out: torch.Tensor, max_sym_per_frame: int
|
|
) -> List[int]:
|
|
"""
|
|
Args:
|
|
model:
|
|
An instance of `Transducer`.
|
|
encoder_out:
|
|
A tensor of shape (N, T, C) from the encoder. Support only N==1 for now.
|
|
max_sym_per_frame:
|
|
Maximum number of symbols per frame. If it is set to 0, the WER
|
|
would be 100%.
|
|
Returns:
|
|
Return the decoded result.
|
|
"""
|
|
assert encoder_out.ndim == 3
|
|
|
|
# support only batch_size == 1 for now
|
|
assert encoder_out.size(0) == 1, encoder_out.size(0)
|
|
|
|
blank_id = model.decoder.blank_id
|
|
unk_id = model.decoder.unk_id
|
|
context_size = model.decoder.context_size
|
|
|
|
device = model.device
|
|
|
|
decoder_input = torch.tensor(
|
|
[blank_id] * context_size, device=device, dtype=torch.int64
|
|
).reshape(1, context_size)
|
|
|
|
decoder_out = model.decoder(decoder_input, need_pad=False)
|
|
|
|
T = encoder_out.size(1)
|
|
t = 0
|
|
hyp = [blank_id] * context_size
|
|
|
|
# Maximum symbols per utterance.
|
|
max_sym_per_utt = 1000
|
|
|
|
# symbols per frame
|
|
sym_per_frame = 0
|
|
|
|
# symbols per utterance decoded so far
|
|
sym_per_utt = 0
|
|
|
|
encoder_out_len = torch.tensor([1])
|
|
decoder_out_len = torch.tensor([1])
|
|
|
|
while t < T and sym_per_utt < max_sym_per_utt:
|
|
if sym_per_frame >= max_sym_per_frame:
|
|
sym_per_frame = 0
|
|
t += 1
|
|
continue
|
|
|
|
# fmt: off
|
|
current_encoder_out = encoder_out[:, t:t+1, :]
|
|
# fmt: on
|
|
logits = model.joiner(
|
|
current_encoder_out, decoder_out, encoder_out_len, decoder_out_len
|
|
)
|
|
# logits is (1, 1, 1, vocab_size)
|
|
|
|
y = logits.argmax().item()
|
|
if y != blank_id and y != unk_id:
|
|
hyp.append(y)
|
|
decoder_input = torch.tensor([hyp[-context_size:]], device=device).reshape(
|
|
1, context_size
|
|
)
|
|
|
|
decoder_out = model.decoder(decoder_input, need_pad=False)
|
|
|
|
sym_per_utt += 1
|
|
sym_per_frame += 1
|
|
else:
|
|
sym_per_frame = 0
|
|
t += 1
|
|
hyp = hyp[context_size:] # remove blanks
|
|
|
|
return hyp
|
|
|
|
|
|
@dataclass
|
|
class Hypothesis:
|
|
# The predicted tokens so far.
|
|
# Newly predicted tokens are appended to `ys`.
|
|
ys: List[int]
|
|
|
|
# The log prob of ys.
|
|
# It contains only one entry.
|
|
log_prob: torch.Tensor
|
|
|
|
@property
|
|
def key(self) -> str:
|
|
"""Return a string representation of self.ys"""
|
|
return "_".join(map(str, self.ys))
|
|
|
|
|
|
class HypothesisList(object):
|
|
def __init__(self, data: Optional[Dict[str, Hypothesis]] = None) -> None:
|
|
"""
|
|
Args:
|
|
data:
|
|
A dict of Hypotheses. Its key is its `value.key`.
|
|
"""
|
|
if data is None:
|
|
self._data = {}
|
|
else:
|
|
self._data = data
|
|
|
|
@property
|
|
def data(self) -> Dict[str, Hypothesis]:
|
|
return self._data
|
|
|
|
def add(self, hyp: Hypothesis) -> None:
|
|
"""Add a Hypothesis to `self`.
|
|
|
|
If `hyp` already exists in `self`, its probability is updated using
|
|
`log-sum-exp` with the existed one.
|
|
|
|
Args:
|
|
hyp:
|
|
The hypothesis to be added.
|
|
"""
|
|
key = hyp.key
|
|
if key in self:
|
|
old_hyp = self._data[key] # shallow copy
|
|
torch.logaddexp(old_hyp.log_prob, hyp.log_prob, out=old_hyp.log_prob)
|
|
else:
|
|
self._data[key] = hyp
|
|
|
|
def get_most_probable(self, length_norm: bool = False) -> Hypothesis:
|
|
"""Get the most probable hypothesis, i.e., the one with
|
|
the largest `log_prob`.
|
|
|
|
Args:
|
|
length_norm:
|
|
If True, the `log_prob` of a hypothesis is normalized by the
|
|
number of tokens in it.
|
|
Returns:
|
|
Return the hypothesis that has the largest `log_prob`.
|
|
"""
|
|
if length_norm:
|
|
return max(self._data.values(), key=lambda hyp: hyp.log_prob / len(hyp.ys))
|
|
else:
|
|
return max(self._data.values(), key=lambda hyp: hyp.log_prob)
|
|
|
|
def remove(self, hyp: Hypothesis) -> None:
|
|
"""Remove a given hypothesis.
|
|
|
|
Caution:
|
|
`self` is modified **in-place**.
|
|
|
|
Args:
|
|
hyp:
|
|
The hypothesis to be removed from `self`.
|
|
Note: It must be contained in `self`. Otherwise,
|
|
an exception is raised.
|
|
"""
|
|
key = hyp.key
|
|
assert key in self, f"{key} does not exist"
|
|
del self._data[key]
|
|
|
|
def filter(self, threshold: torch.Tensor) -> "HypothesisList":
|
|
"""Remove all Hypotheses whose log_prob is less than threshold.
|
|
|
|
Caution:
|
|
`self` is not modified. Instead, a new HypothesisList is returned.
|
|
|
|
Returns:
|
|
Return a new HypothesisList containing all hypotheses from `self`
|
|
with `log_prob` being greater than the given `threshold`.
|
|
"""
|
|
ans = HypothesisList()
|
|
for _, hyp in self._data.items():
|
|
if hyp.log_prob > threshold:
|
|
ans.add(hyp) # shallow copy
|
|
return ans
|
|
|
|
def topk(self, k: int) -> "HypothesisList":
|
|
"""Return the top-k hypothesis."""
|
|
hyps = list(self._data.items())
|
|
|
|
hyps = sorted(hyps, key=lambda h: h[1].log_prob, reverse=True)[:k]
|
|
|
|
ans = HypothesisList(dict(hyps))
|
|
return ans
|
|
|
|
def __contains__(self, key: str):
|
|
return key in self._data
|
|
|
|
def __iter__(self):
|
|
return iter(self._data.values())
|
|
|
|
def __len__(self) -> int:
|
|
return len(self._data)
|
|
|
|
def __str__(self) -> str:
|
|
s = []
|
|
for key in self:
|
|
s.append(key)
|
|
return ", ".join(s)
|
|
|
|
|
|
def run_decoder(
|
|
ys: List[int],
|
|
model: Transducer,
|
|
decoder_cache: Dict[str, torch.Tensor],
|
|
) -> torch.Tensor:
|
|
"""Run the neural decoder model for a given hypothesis.
|
|
|
|
Args:
|
|
ys:
|
|
The current hypothesis.
|
|
model:
|
|
The transducer model.
|
|
decoder_cache:
|
|
Cache to save computations.
|
|
Returns:
|
|
Return a 1-D tensor of shape (decoder_out_dim,) containing
|
|
output of `model.decoder`.
|
|
"""
|
|
context_size = model.decoder.context_size
|
|
key = "_".join(map(str, ys[-context_size:]))
|
|
if key in decoder_cache:
|
|
return decoder_cache[key]
|
|
|
|
device = model.device
|
|
|
|
decoder_input = torch.tensor([ys[-context_size:]], device=device).reshape(
|
|
1, context_size
|
|
)
|
|
|
|
decoder_out = model.decoder(decoder_input, need_pad=False)
|
|
decoder_cache[key] = decoder_out
|
|
|
|
return decoder_out
|
|
|
|
|
|
def run_joiner(
|
|
key: str,
|
|
model: Transducer,
|
|
encoder_out: torch.Tensor,
|
|
decoder_out: torch.Tensor,
|
|
encoder_out_len: torch.Tensor,
|
|
decoder_out_len: torch.Tensor,
|
|
joint_cache: Dict[str, torch.Tensor],
|
|
):
|
|
"""Run the joint network given outputs from the encoder and decoder.
|
|
|
|
Args:
|
|
key:
|
|
A key into the `joint_cache`.
|
|
model:
|
|
The transducer model.
|
|
encoder_out:
|
|
A tensor of shape (1, 1, encoder_out_dim).
|
|
decoder_out:
|
|
A tensor of shape (1, 1, decoder_out_dim).
|
|
encoder_out_len:
|
|
A tensor with value [1].
|
|
decoder_out_len:
|
|
A tensor with value [1].
|
|
joint_cache:
|
|
A dict to save computations.
|
|
Returns:
|
|
Return a tensor from the output of log-softmax.
|
|
Its shape is (vocab_size,).
|
|
"""
|
|
if key in joint_cache:
|
|
return joint_cache[key]
|
|
|
|
logits = model.joiner(
|
|
encoder_out,
|
|
decoder_out,
|
|
encoder_out_len,
|
|
decoder_out_len,
|
|
)
|
|
|
|
# TODO(fangjun): Scale the blank posterior
|
|
log_prob = logits.log_softmax(dim=-1)
|
|
# log_prob is (1, 1, 1, vocab_size)
|
|
|
|
log_prob = log_prob.squeeze()
|
|
# Now log_prob is (vocab_size,)
|
|
|
|
joint_cache[key] = log_prob
|
|
|
|
return log_prob
|
|
|
|
|
|
def modified_beam_search(
|
|
model: Transducer,
|
|
encoder_out: torch.Tensor,
|
|
beam: int = 4,
|
|
) -> List[int]:
|
|
"""It limits the maximum number of symbols per frame to 1.
|
|
|
|
Args:
|
|
model:
|
|
An instance of `Transducer`.
|
|
encoder_out:
|
|
A tensor of shape (N, T, C) from the encoder. Support only N==1 for now.
|
|
beam:
|
|
Beam size.
|
|
Returns:
|
|
Return the decoded result.
|
|
"""
|
|
|
|
assert encoder_out.ndim == 3
|
|
|
|
# support only batch_size == 1 for now
|
|
assert encoder_out.size(0) == 1, encoder_out.size(0)
|
|
blank_id = model.decoder.blank_id
|
|
unk_id = model.decoder.unk_id
|
|
context_size = model.decoder.context_size
|
|
|
|
device = model.device
|
|
|
|
decoder_input = torch.tensor([blank_id] * context_size, device=device).reshape(
|
|
1, context_size
|
|
)
|
|
|
|
decoder_out = model.decoder(decoder_input, need_pad=False)
|
|
|
|
T = encoder_out.size(1)
|
|
|
|
B = HypothesisList()
|
|
B.add(
|
|
Hypothesis(
|
|
ys=[blank_id] * context_size,
|
|
log_prob=torch.zeros(1, dtype=torch.float32, device=device),
|
|
)
|
|
)
|
|
|
|
encoder_out_len = torch.tensor([1])
|
|
decoder_out_len = torch.tensor([1])
|
|
|
|
for t in range(T):
|
|
# fmt: off
|
|
current_encoder_out = encoder_out[:, t:t+1, :]
|
|
# current_encoder_out is of shape (1, 1, encoder_out_dim)
|
|
# fmt: on
|
|
A = list(B)
|
|
B = HypothesisList()
|
|
|
|
ys_log_probs = torch.cat([hyp.log_prob.reshape(1, 1) for hyp in A])
|
|
# ys_log_probs is of shape (num_hyps, 1)
|
|
|
|
decoder_input = torch.tensor(
|
|
[hyp.ys[-context_size:] for hyp in A],
|
|
device=device,
|
|
)
|
|
# decoder_input is of shape (num_hyps, context_size)
|
|
|
|
decoder_out = model.decoder(decoder_input, need_pad=False)
|
|
# decoder_output is of shape (num_hyps, 1, decoder_output_dim)
|
|
|
|
current_encoder_out = current_encoder_out.expand(decoder_out.size(0), 1, -1)
|
|
|
|
logits = model.joiner(
|
|
current_encoder_out,
|
|
decoder_out,
|
|
encoder_out_len.expand(decoder_out.size(0)),
|
|
decoder_out_len.expand(decoder_out.size(0)),
|
|
)
|
|
# logits is of shape (num_hyps, vocab_size)
|
|
log_probs = logits.log_softmax(dim=-1)
|
|
|
|
log_probs.add_(ys_log_probs)
|
|
|
|
log_probs = log_probs.reshape(-1)
|
|
topk_log_probs, topk_indexes = log_probs.topk(beam)
|
|
|
|
# topk_hyp_indexes are indexes into `A`
|
|
topk_hyp_indexes = topk_indexes // logits.size(-1)
|
|
topk_token_indexes = topk_indexes % logits.size(-1)
|
|
|
|
topk_hyp_indexes = topk_hyp_indexes.tolist()
|
|
topk_token_indexes = topk_token_indexes.tolist()
|
|
|
|
for i in range(len(topk_hyp_indexes)):
|
|
hyp = A[topk_hyp_indexes[i]]
|
|
new_ys = hyp.ys[:]
|
|
new_token = topk_token_indexes[i]
|
|
if new_token != blank_id and new_token != unk_id:
|
|
new_ys.append(new_token)
|
|
new_log_prob = topk_log_probs[i]
|
|
new_hyp = Hypothesis(ys=new_ys, log_prob=new_log_prob)
|
|
B.add(new_hyp)
|
|
|
|
best_hyp = B.get_most_probable(length_norm=True)
|
|
ys = best_hyp.ys[context_size:] # [context_size:] to remove blanks
|
|
|
|
return ys
|
|
|
|
|
|
def beam_search(
|
|
model: Transducer,
|
|
encoder_out: torch.Tensor,
|
|
beam: int = 4,
|
|
) -> List[int]:
|
|
"""
|
|
It implements Algorithm 1 in https://arxiv.org/pdf/1211.3711.pdf
|
|
|
|
espnet/nets/beam_search_transducer.py#L247 is used as a reference.
|
|
|
|
Args:
|
|
model:
|
|
An instance of `Transducer`.
|
|
encoder_out:
|
|
A tensor of shape (N, T, C) from the encoder. Support only N==1 for now.
|
|
beam:
|
|
Beam size.
|
|
Returns:
|
|
Return the decoded result.
|
|
"""
|
|
assert encoder_out.ndim == 3
|
|
|
|
# support only batch_size == 1 for now
|
|
assert encoder_out.size(0) == 1, encoder_out.size(0)
|
|
blank_id = model.decoder.blank_id
|
|
unk_id = model.decoder.unk_id
|
|
context_size = model.decoder.context_size
|
|
|
|
device = model.device
|
|
|
|
decoder_input = torch.tensor([blank_id] * context_size, device=device).reshape(
|
|
1, context_size
|
|
)
|
|
|
|
decoder_out = model.decoder(decoder_input, need_pad=False)
|
|
|
|
T = encoder_out.size(1)
|
|
t = 0
|
|
|
|
B = HypothesisList()
|
|
B.add(
|
|
Hypothesis(
|
|
ys=[blank_id] * context_size,
|
|
log_prob=torch.zeros(1, dtype=torch.float32, device=device),
|
|
)
|
|
)
|
|
|
|
max_sym_per_utt = 20000
|
|
|
|
sym_per_utt = 0
|
|
|
|
encoder_out_len = torch.tensor([1])
|
|
decoder_out_len = torch.tensor([1])
|
|
|
|
decoder_cache: Dict[str, torch.Tensor] = {}
|
|
|
|
while t < T and sym_per_utt < max_sym_per_utt:
|
|
# fmt: off
|
|
current_encoder_out = encoder_out[:, t:t+1, :]
|
|
# fmt: on
|
|
A = B
|
|
B = HypothesisList()
|
|
|
|
joint_cache: Dict[str, torch.Tensor] = {}
|
|
|
|
while True:
|
|
y_star = A.get_most_probable()
|
|
A.remove(y_star)
|
|
|
|
decoder_out = run_decoder(
|
|
ys=y_star.ys, model=model, decoder_cache=decoder_cache
|
|
)
|
|
|
|
key = "_".join(map(str, y_star.ys[-context_size:]))
|
|
key += f"-t-{t}"
|
|
log_prob = run_joiner(
|
|
key=key,
|
|
model=model,
|
|
encoder_out=current_encoder_out,
|
|
decoder_out=decoder_out,
|
|
encoder_out_len=encoder_out_len,
|
|
decoder_out_len=decoder_out_len,
|
|
joint_cache=joint_cache,
|
|
)
|
|
|
|
# First, process the blank symbol
|
|
skip_log_prob = log_prob[blank_id]
|
|
new_y_star_log_prob = y_star.log_prob + skip_log_prob
|
|
|
|
# ys[:] returns a copy of ys
|
|
B.add(Hypothesis(ys=y_star.ys[:], log_prob=new_y_star_log_prob))
|
|
|
|
# Second, process other non-blank labels
|
|
values, indices = log_prob.topk(beam + 1)
|
|
for idx in range(values.size(0)):
|
|
i = indices[idx].item()
|
|
if i == blank_id or i == unk_id:
|
|
continue
|
|
|
|
new_ys = y_star.ys + [i]
|
|
|
|
new_log_prob = y_star.log_prob + values[idx]
|
|
A.add(Hypothesis(ys=new_ys, log_prob=new_log_prob))
|
|
|
|
# Check whether B contains more than "beam" elements more probable
|
|
# than the most probable in A
|
|
A_most_probable = A.get_most_probable()
|
|
|
|
kept_B = B.filter(A_most_probable.log_prob)
|
|
|
|
if len(kept_B) >= beam:
|
|
B = kept_B.topk(beam)
|
|
break
|
|
|
|
t += 1
|
|
|
|
best_hyp = B.get_most_probable(length_norm=True)
|
|
ys = best_hyp.ys[context_size:] # [context_size:] to remove blanks
|
|
return ys
|