mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
200 lines
5.8 KiB
Bash
Executable File
200 lines
5.8 KiB
Bash
Executable File
#!/usr/bin/env bash
|
|
|
|
# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674
|
|
export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
|
|
|
|
set -eou pipefail
|
|
|
|
nj=20
|
|
stage=-1
|
|
stop_stage=100
|
|
|
|
# We assume dl_dir (download dir) contains the following
|
|
# directories and files. If not, they will be downloaded
|
|
# by this script automatically.
|
|
#
|
|
# - $dl_dir/spgispeech
|
|
# You can find train.csv, val.csv, train, and val in this directory, which belong
|
|
# to the SPGISpeech dataset.
|
|
#
|
|
# - $dl_dir/musan
|
|
# This directory contains the following directories downloaded from
|
|
# http://www.openslr.org/17/
|
|
#
|
|
# - music
|
|
# - noise
|
|
# - speech
|
|
dl_dir=$PWD/download
|
|
|
|
. shared/parse_options.sh || exit 1
|
|
|
|
# vocab size for sentence piece models.
|
|
# It will generate data/lang_bpe_xxx,
|
|
# data/lang_bpe_yyy if the array contains xxx, yyy
|
|
vocab_sizes=(
|
|
500
|
|
)
|
|
|
|
# All files generated by this script are saved in "data".
|
|
# You can safely remove "data" and rerun this script to regenerate it.
|
|
mkdir -p data
|
|
|
|
log() {
|
|
# This function is from espnet
|
|
local fname=${BASH_SOURCE[1]##*/}
|
|
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
|
|
}
|
|
|
|
log "dl_dir: $dl_dir"
|
|
|
|
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
|
|
log "Stage 0: Download data"
|
|
|
|
# If you have pre-downloaded it to /path/to/spgispeech,
|
|
# you can create a symlink
|
|
#
|
|
# ln -sfv /path/to/spgispeech $dl_dir/spgispeech
|
|
#
|
|
if [ ! -d $dl_dir/spgispeech/train.csv ]; then
|
|
lhotse download spgispeech $dl_dir
|
|
fi
|
|
|
|
# If you have pre-downloaded it to /path/to/musan,
|
|
# you can create a symlink
|
|
#
|
|
# ln -sfv /path/to/musan $dl_dir/
|
|
#
|
|
if [ ! -d $dl_dir/musan ]; then
|
|
lhotse download musan $dl_dir
|
|
fi
|
|
fi
|
|
|
|
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
|
|
log "Stage 1: Prepare SPGISpeech manifest (may take ~1h)"
|
|
# We assume that you have downloaded the SPGISpeech corpus
|
|
# to $dl_dir/spgispeech. We perform text normalization for the transcripts.
|
|
mkdir -p data/manifests
|
|
lhotse prepare spgispeech -j $nj --normalize-text $dl_dir/spgispeech data/manifests
|
|
fi
|
|
|
|
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
|
|
log "Stage 2: Prepare musan manifest"
|
|
# We assume that you have downloaded the musan corpus
|
|
# to data/musan
|
|
mkdir -p data/manifests
|
|
lhotse prepare musan $dl_dir/musan data/manifests
|
|
lhotse combine data/manifests/recordings_{music,speech,noise}.json data/manifests/recordings_musan.jsonl.gz
|
|
lhotse cut simple -r data/manifests/recordings_musan.jsonl.gz data/manifests/cuts_musan_raw.jsonl.gz
|
|
fi
|
|
|
|
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
|
|
log "Stage 3: Split train into train and dev and create cut sets."
|
|
python local/prepare_splits.py
|
|
fi
|
|
|
|
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
|
|
log "Stage 4: Compute fbank features for spgispeech dev and val"
|
|
mkdir -p data/fbank
|
|
python local/compute_fbank_spgispeech.py --test
|
|
fi
|
|
|
|
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
|
|
log "Stage 5: Compute fbank features for train"
|
|
mkdir -p data/fbank
|
|
python local/compute_fbank_spgispeech.py --train --num-splits 20
|
|
|
|
log "Combine features from train splits (may take ~1h)"
|
|
if [ ! -f data/manifests/cuts_train.jsonl.gz ]; then
|
|
pieces=$(find data/manifests -name "cuts_train_[0-9]*.jsonl.gz")
|
|
lhotse combine $pieces data/manifests/cuts_train.jsonl.gz
|
|
fi
|
|
gunzip -c data/manifests/cuts_train.jsonl.gz | shuf | gzip -c > data/manifests/cuts_train_shuf.jsonl.gz
|
|
fi
|
|
|
|
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
|
|
log "Stage 6: Compute fbank features for musan"
|
|
mkdir -p data/fbank
|
|
python local/compute_fbank_musan.py
|
|
fi
|
|
|
|
if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
|
|
log "Stage 7: Dump transcripts for LM training"
|
|
mkdir -p data/lm
|
|
gunzip -c data/manifests/cuts_train_raw.jsonl.gz \
|
|
| jq '.supervisions[0].text' \
|
|
| sed 's:"::g' \
|
|
> data/lm/transcript_words.txt
|
|
fi
|
|
|
|
if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then
|
|
log "Stage 8: Prepare BPE based lang"
|
|
|
|
for vocab_size in ${vocab_sizes[@]}; do
|
|
lang_dir=data/lang_bpe_${vocab_size}
|
|
mkdir -p $lang_dir
|
|
|
|
# Add special words to words.txt
|
|
echo "<eps> 0" > $lang_dir/words.txt
|
|
echo "!SIL 1" >> $lang_dir/words.txt
|
|
echo "<UNK> 2" >> $lang_dir/words.txt
|
|
|
|
# Add regular words to words.txt
|
|
gunzip -c data/manifests/cuts_train_raw.jsonl.gz \
|
|
| jq '.supervisions[0].text' \
|
|
| sed 's:"::g' \
|
|
| sed 's: :\n:g' \
|
|
| sort \
|
|
| uniq \
|
|
| sed '/^$/d' \
|
|
| awk '{print $0,NR+2}' \
|
|
>> $lang_dir/words.txt
|
|
|
|
# Add remaining special word symbols expected by LM scripts.
|
|
num_words=$(cat $lang_dir/words.txt | wc -l)
|
|
echo "<s> ${num_words}" >> $lang_dir/words.txt
|
|
num_words=$(cat $lang_dir/words.txt | wc -l)
|
|
echo "</s> ${num_words}" >> $lang_dir/words.txt
|
|
num_words=$(cat $lang_dir/words.txt | wc -l)
|
|
echo "#0 ${num_words}" >> $lang_dir/words.txt
|
|
|
|
./local/train_bpe_model.py \
|
|
--lang-dir $lang_dir \
|
|
--vocab-size $vocab_size \
|
|
--transcript data/lm/transcript_words.txt
|
|
|
|
if [ ! -f $lang_dir/L_disambig.pt ]; then
|
|
./local/prepare_lang_bpe.py --lang-dir $lang_dir
|
|
fi
|
|
done
|
|
fi
|
|
|
|
if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then
|
|
log "Stage 9: Train LM"
|
|
lm_dir=data/lm
|
|
|
|
if [ ! -f $lm_dir/G.arpa ]; then
|
|
./shared/make_kn_lm.py \
|
|
-ngram-order 3 \
|
|
-text $lm_dir/transcript_words.txt \
|
|
-lm $lm_dir/G.arpa
|
|
fi
|
|
|
|
if [ ! -f $lm_dir/G_3_gram.fst.txt ]; then
|
|
python3 -m kaldilm \
|
|
--read-symbol-table="data/lang_phone/words.txt" \
|
|
--disambig-symbol='#0' \
|
|
--max-order=3 \
|
|
$lm_dir/G.arpa > $lm_dir/G_3_gram.fst.txt
|
|
fi
|
|
fi
|
|
|
|
if [ $stage -le 10 ] && [ $stop_stage -ge 10 ]; then
|
|
log "Stage 10: Compile HLG"
|
|
./local/compile_hlg.py --lang-dir data/lang_phone
|
|
|
|
for vocab_size in ${vocab_sizes[@]}; do
|
|
lang_dir=data/lang_bpe_${vocab_size}
|
|
./local/compile_hlg.py --lang-dir $lang_dir
|
|
done
|
|
fi
|