mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
2438 lines
91 KiB
Python
2438 lines
91 KiB
Python
#!/usr/bin/env python3
|
|
# Copyright 2022-2023 Xiaomi Corp. (authors: Daniel Povey,
|
|
# Zengwei Yao)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import copy
|
|
import logging
|
|
import math
|
|
import random
|
|
import warnings
|
|
from typing import List, Optional, Tuple, Union
|
|
|
|
import torch
|
|
from encoder_interface import EncoderInterface
|
|
from scaling import (
|
|
Identity, # more friendly to backward hooks than nn.Identity(), for diagnostic reasons.
|
|
)
|
|
from scaling import (
|
|
ScaledLinear, # not as in other dirs.. just scales down initial parameter values.
|
|
)
|
|
from scaling import (
|
|
ActivationDropoutAndLinear,
|
|
Balancer,
|
|
BiasNorm,
|
|
ChunkCausalDepthwiseConv1d,
|
|
Dropout2,
|
|
FloatLike,
|
|
ScheduledFloat,
|
|
Whiten,
|
|
convert_num_channels,
|
|
limit_param_value,
|
|
penalize_abs_values_gt,
|
|
softmax,
|
|
)
|
|
from torch import Tensor, nn
|
|
|
|
|
|
class Zipformer2(EncoderInterface):
|
|
"""
|
|
Args:
|
|
|
|
Note: all "int or Tuple[int]" arguments below will be treated as lists of the same length
|
|
as downsampling_factor if they are single ints or one-element tuples. The length of
|
|
downsampling_factor defines the number of stacks.
|
|
|
|
output_downsampling_factor (int): how much to downsample at the output. Note:
|
|
we also downsample by a factor of 2 in the Conv2dSubsampling encoder.
|
|
You should probably leave this at 2.
|
|
downsampling_factor (Tuple[int]): downsampling factor for each encoder stack.
|
|
Note: this is in addition to the downsampling factor of 2 that is applied in
|
|
the frontend (self.encoder_embed).
|
|
encoder_dim (Tuple[int]): embedding dimension of each of the encoder stacks, one per
|
|
encoder stack.
|
|
num_encoder_layers (int or Tuple[int])): number of encoder layers for each stack
|
|
encoder_unmasked_dim (int or Tuple[int]): unmasked dimension in each of
|
|
the encoder stacks for purposes of per-frame dropout (recommend 256 for
|
|
now).
|
|
query_head_dim (int or Tuple[int]): dimension of query and key per attention
|
|
head: per stack, if a tuple..
|
|
pos_head_dim (int or Tuple[int]): dimension of positional-encoding projection per
|
|
attention head
|
|
value_head_dim (int or Tuple[int]): dimension of value in each attention head
|
|
num_heads: (int or Tuple[int]): number of heads in the self-attention mechanism.
|
|
Must be at least 4.
|
|
feedforward_dim (int or Tuple[int]): hidden dimension in feedforward modules
|
|
cnn_module_kernel (int or Tuple[int])): Kernel size of convolution module
|
|
|
|
pos_dim (int): the dimension of each positional-encoding vector prior to projection,
|
|
e.g. 128.
|
|
|
|
dropout (float): dropout rate
|
|
warmup_batches (float): number of batches to warm up over; this controls
|
|
dropout of encoder layers.
|
|
causal (bool): if True, support chunkwise causal convolution. This should
|
|
not hurt WER as no modeling power is lost, but the convolution modules will be
|
|
slightly slower and use more memory. Enables use of the chunk_size and
|
|
left_context_chunks options in forward(), which simulates streaming
|
|
decoding.
|
|
chunk_size: (list of int): only set this to other than [-1] if causal;
|
|
the chunk size will be randomly chosen from this list. -1 means no chunking.
|
|
left_context_frames: (list of int): determines the number of left-
|
|
context chunks for causal training; will be rounded to a number of
|
|
chunks. Must not be less than cnn_module_kernel (after factoring in
|
|
rounding and downsampling); an error will be thrown if this is violated.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
output_downsampling_factor: int = 2,
|
|
downsampling_factor: Tuple[int] = (2, 4),
|
|
encoder_dim: Union[int, Tuple[int]] = 384,
|
|
num_encoder_layers: Union[int, Tuple[int]] = 4,
|
|
encoder_unmasked_dim: Union[int, Tuple[int]] = 256,
|
|
query_head_dim: Union[int, Tuple[int]] = 24,
|
|
pos_head_dim: Union[int, Tuple[int]] = 4,
|
|
value_head_dim: Union[int, Tuple[int]] = 12,
|
|
num_heads: Union[int, Tuple[int]] = 8,
|
|
feedforward_dim: Union[int, Tuple[int]] = 1536,
|
|
cnn_module_kernel: Union[int, Tuple[int]] = 31,
|
|
pos_dim: int = 192,
|
|
dropout: FloatLike = None, # see code below for default
|
|
warmup_batches: float = 4000.0,
|
|
causal: bool = False,
|
|
chunk_size: Tuple[int] = [-1],
|
|
left_context_frames: Tuple[int] = [-1],
|
|
) -> None:
|
|
super(Zipformer2, self).__init__()
|
|
|
|
if dropout is None:
|
|
dropout = ScheduledFloat((0.0, 0.3), (20000.0, 0.1))
|
|
|
|
def _to_tuple(x):
|
|
"""Converts a single int or a 1-tuple of an int to a tuple with the same length
|
|
as downsampling_factor"""
|
|
if isinstance(x, int):
|
|
x = (x,)
|
|
if len(x) == 1:
|
|
x = x * len(downsampling_factor)
|
|
else:
|
|
assert len(x) == len(downsampling_factor) and isinstance(x[0], int)
|
|
return x
|
|
|
|
self.output_downsampling_factor = output_downsampling_factor # int
|
|
self.downsampling_factor = downsampling_factor # tuple
|
|
self.encoder_dim = encoder_dim = _to_tuple(encoder_dim) # tuple
|
|
self.encoder_unmasked_dim = encoder_unmasked_dim = _to_tuple(
|
|
encoder_unmasked_dim
|
|
) # tuple
|
|
num_encoder_layers = _to_tuple(num_encoder_layers)
|
|
self.num_encoder_layers = num_encoder_layers
|
|
self.query_head_dim = query_head_dim = _to_tuple(query_head_dim)
|
|
self.value_head_dim = value_head_dim = _to_tuple(value_head_dim)
|
|
pos_head_dim = _to_tuple(pos_head_dim)
|
|
self.num_heads = num_heads = _to_tuple(num_heads)
|
|
feedforward_dim = _to_tuple(feedforward_dim)
|
|
self.cnn_module_kernel = cnn_module_kernel = _to_tuple(cnn_module_kernel)
|
|
|
|
self.causal = causal
|
|
self.chunk_size = chunk_size
|
|
self.left_context_frames = left_context_frames
|
|
|
|
for u, d in zip(encoder_unmasked_dim, encoder_dim):
|
|
assert u <= d
|
|
|
|
# each one will be Zipformer2Encoder or DownsampledZipformer2Encoder
|
|
encoders = []
|
|
|
|
num_encoders = len(downsampling_factor)
|
|
for i in range(num_encoders):
|
|
encoder_layer = Zipformer2EncoderLayer(
|
|
embed_dim=encoder_dim[i],
|
|
pos_dim=pos_dim,
|
|
num_heads=num_heads[i],
|
|
query_head_dim=query_head_dim[i],
|
|
pos_head_dim=pos_head_dim[i],
|
|
value_head_dim=value_head_dim[i],
|
|
feedforward_dim=feedforward_dim[i],
|
|
dropout=dropout,
|
|
cnn_module_kernel=cnn_module_kernel[i],
|
|
causal=causal,
|
|
)
|
|
|
|
# For the segment of the warmup period, we let the Conv2dSubsampling
|
|
# layer learn something. Then we start to warm up the other encoders.
|
|
encoder = Zipformer2Encoder(
|
|
encoder_layer,
|
|
num_encoder_layers[i],
|
|
pos_dim=pos_dim,
|
|
dropout=dropout,
|
|
warmup_begin=warmup_batches * (i + 1) / (num_encoders + 1),
|
|
warmup_end=warmup_batches * (i + 2) / (num_encoders + 1),
|
|
final_layerdrop_rate=0.035 * (downsampling_factor[i] ** 0.5),
|
|
)
|
|
|
|
if downsampling_factor[i] != 1:
|
|
encoder = DownsampledZipformer2Encoder(
|
|
encoder,
|
|
dim=encoder_dim[i],
|
|
downsample=downsampling_factor[i],
|
|
dropout=dropout,
|
|
)
|
|
|
|
encoders.append(encoder)
|
|
|
|
self.encoders = nn.ModuleList(encoders)
|
|
|
|
self.downsample_output = SimpleDownsample(
|
|
max(encoder_dim), downsample=output_downsampling_factor, dropout=dropout
|
|
)
|
|
|
|
def get_feature_masks(self, x: Tensor) -> Union[List[float], List[Tensor]]:
|
|
"""
|
|
In eval mode, returns [1.0] * num_encoders; in training mode, returns a number of
|
|
randomized feature masks, one per encoder.
|
|
On e.g. 15% of frames, these masks will zero out all enocder dims larger than
|
|
some supplied number, e.g. >256, so in effect on those frames we are using
|
|
a smaller encoer dim.
|
|
|
|
We generate the random masks at this level because we want the 2 masks to 'agree'
|
|
all the way up the encoder stack. This will mean that the 1st mask will have
|
|
mask values repeated self.zipformer_subsampling_factor times.
|
|
|
|
Args:
|
|
x: the embeddings (needed for the shape and dtype and device), of shape
|
|
(1, batch_size, encoder_dims0)
|
|
"""
|
|
num_encoders = len(self.encoder_dim)
|
|
if not self.training:
|
|
return [1.0] * num_encoders
|
|
|
|
(num_frames0, batch_size, _encoder_dims0) = x.shape
|
|
|
|
assert self.encoder_dim[0] == _encoder_dims0, (
|
|
self.encoder_dim[0],
|
|
_encoder_dims0,
|
|
)
|
|
|
|
feature_mask_dropout_prob = 0.125
|
|
|
|
# mask1 shape: (1, batch_size, 1)
|
|
mask1 = (
|
|
torch.rand(1, batch_size, 1, device=x.device) > feature_mask_dropout_prob
|
|
).to(x.dtype)
|
|
|
|
# mask2 has additional sequences masked, about twice the number.
|
|
mask2 = torch.logical_and(
|
|
mask1,
|
|
(
|
|
torch.rand(1, batch_size, 1, device=x.device)
|
|
> feature_mask_dropout_prob
|
|
).to(x.dtype),
|
|
)
|
|
|
|
# dim: (1, batch_size, 2)
|
|
mask = torch.cat((mask1, mask2), dim=-1)
|
|
|
|
feature_masks = []
|
|
for i in range(num_encoders):
|
|
channels = self.encoder_dim[i]
|
|
feature_mask = torch.ones(
|
|
1, batch_size, channels, dtype=x.dtype, device=x.device
|
|
)
|
|
u1 = self.encoder_unmasked_dim[i]
|
|
u2 = u1 + (channels - u1) // 2
|
|
|
|
feature_mask[:, :, u1:u2] *= mask[..., 0:1]
|
|
feature_mask[:, :, u2:] *= mask[..., 1:2]
|
|
|
|
feature_masks.append(feature_mask)
|
|
|
|
return feature_masks
|
|
|
|
def get_chunk_info(self) -> Tuple[int, int]:
|
|
"""
|
|
Returns chunk_size and left_context_chunks.
|
|
"""
|
|
if not self.causal:
|
|
return -1, -1
|
|
|
|
if torch.jit.is_scripting() or torch.jit.is_tracing():
|
|
assert len(self.chunk_size) == 1, self.chunk_size
|
|
chunk_size = self.chunk_size[0]
|
|
else:
|
|
chunk_size = random.choice(self.chunk_size)
|
|
|
|
if chunk_size == -1:
|
|
left_context_chunks = -1
|
|
else:
|
|
if torch.jit.is_scripting() or torch.jit.is_tracing():
|
|
assert len(self.left_context_frames) == 1, self.left_context_frames
|
|
left_context_frames = self.left_context_frames[0]
|
|
else:
|
|
left_context_frames = random.choice(self.left_context_frames)
|
|
# Note: in Python, -1 // n == -1 for n > 0
|
|
left_context_chunks = left_context_frames // chunk_size
|
|
if left_context_chunks == 0:
|
|
left_context_chunks = 1
|
|
|
|
return chunk_size, left_context_chunks
|
|
|
|
def forward(
|
|
self,
|
|
x: Tensor,
|
|
x_lens: Tensor,
|
|
src_key_padding_mask: Optional[Tensor] = None,
|
|
) -> Tuple[Tensor, Tensor]:
|
|
"""
|
|
Args:
|
|
x:
|
|
The input tensor. Its shape is (seq_len, batch_size, feature_dim).
|
|
x_lens:
|
|
A tensor of shape (batch_size,) containing the number of frames in
|
|
`x` before padding.
|
|
src_key_padding_mask:
|
|
The mask for padding, of shape (batch_size, seq_len); True means
|
|
masked position. May be None.
|
|
Returns:
|
|
Return a tuple containing 2 tensors:
|
|
- embeddings: its shape is (output_seq_len, batch_size, max(encoder_dim))
|
|
- lengths, a tensor of shape (batch_size,) containing the number
|
|
of frames in `embeddings` before padding.
|
|
"""
|
|
outputs = []
|
|
if torch.jit.is_scripting() or torch.jit.is_tracing():
|
|
feature_masks = [1.0] * len(self.encoder_dim)
|
|
else:
|
|
feature_masks = self.get_feature_masks(x)
|
|
|
|
chunk_size, left_context_chunks = self.get_chunk_info()
|
|
|
|
if torch.jit.is_scripting() or torch.jit.is_tracing():
|
|
# Not support exporting a model for simulating streaming decoding
|
|
attn_mask = None
|
|
else:
|
|
attn_mask = self._get_attn_mask(x, chunk_size, left_context_chunks)
|
|
|
|
for i, module in enumerate(self.encoders):
|
|
ds = self.downsampling_factor[i]
|
|
x = convert_num_channels(x, self.encoder_dim[i])
|
|
|
|
x = module(
|
|
x,
|
|
chunk_size=chunk_size,
|
|
feature_mask=feature_masks[i],
|
|
src_key_padding_mask=(
|
|
None
|
|
if src_key_padding_mask is None
|
|
else src_key_padding_mask[..., ::ds]
|
|
),
|
|
attn_mask=attn_mask,
|
|
)
|
|
outputs.append(x)
|
|
|
|
# if the last output has the largest dimension, x will be unchanged,
|
|
# it will be the same as outputs[-1]. Otherwise it will be concatenated
|
|
# from different pieces of 'outputs', taking each dimension from the
|
|
# most recent output that has it present.
|
|
x = self._get_full_dim_output(outputs)
|
|
x = self.downsample_output(x)
|
|
# class Downsample has this rounding behavior..
|
|
assert self.output_downsampling_factor == 2, self.output_downsampling_factor
|
|
if torch.jit.is_scripting() or torch.jit.is_tracing():
|
|
lengths = (x_lens + 1) // 2
|
|
else:
|
|
with warnings.catch_warnings():
|
|
warnings.simplefilter("ignore")
|
|
lengths = (x_lens + 1) // 2
|
|
|
|
return x, lengths
|
|
|
|
def _get_attn_mask(
|
|
self, x: Tensor, chunk_size: int, left_context_chunks: int
|
|
) -> Optional[Tensor]:
|
|
"""
|
|
Return None if chunk_size == -1, else return attention mask of shape
|
|
(seq_len, seq_len), interpreted as (tgt_seq_len, src_seq_len). True
|
|
means a masked position.
|
|
Args:
|
|
x: embeddings after self.encoder_embed(), of shape (seq_len, batch_size, embed_dim).
|
|
chunk_size: chunk size, must divide
|
|
"""
|
|
if chunk_size <= 0:
|
|
return None
|
|
assert all(chunk_size % d == 0 for d in self.downsampling_factor)
|
|
if left_context_chunks >= 0:
|
|
num_encoders = len(self.encoder_dim)
|
|
assert all(
|
|
chunk_size * left_context_chunks
|
|
>= (self.cnn_module_kernel[i] // 2) * self.downsampling_factor[i]
|
|
for i in range(num_encoders)
|
|
)
|
|
else:
|
|
left_context_chunks = 1000000
|
|
|
|
seq_len = x.shape[0]
|
|
|
|
# t is frame index, shape (seq_len,)
|
|
t = torch.arange(seq_len, dtype=torch.int32, device=x.device)
|
|
# c is chunk index for each frame, shape (seq_len,)
|
|
if torch.jit.is_scripting() or torch.jit.is_tracing():
|
|
c = t // chunk_size
|
|
else:
|
|
with warnings.catch_warnings():
|
|
warnings.simplefilter("ignore")
|
|
c = t // chunk_size
|
|
src_c = c
|
|
tgt_c = c.unsqueeze(-1)
|
|
|
|
attn_mask = torch.logical_or(src_c > tgt_c, src_c < tgt_c - left_context_chunks)
|
|
if __name__ == "__main__":
|
|
logging.info(f"attn_mask = {attn_mask}")
|
|
return attn_mask
|
|
|
|
def _get_full_dim_output(self, outputs: List[Tensor]):
|
|
num_encoders = len(self.encoder_dim)
|
|
assert len(outputs) == num_encoders
|
|
output_dim = max(self.encoder_dim)
|
|
output_pieces = [outputs[-1]]
|
|
cur_dim = self.encoder_dim[-1]
|
|
for i in range(num_encoders - 2, -1, -1):
|
|
d = self.encoder_dim[i]
|
|
if d > cur_dim:
|
|
this_output = outputs[i]
|
|
output_pieces.append(this_output[..., cur_dim:d])
|
|
cur_dim = d
|
|
assert cur_dim == output_dim
|
|
return torch.cat(output_pieces, dim=-1)
|
|
|
|
def streaming_forward(
|
|
self,
|
|
x: Tensor,
|
|
x_lens: Tensor,
|
|
states: List[Tensor],
|
|
src_key_padding_mask: Tensor,
|
|
) -> Tuple[Tensor, Tensor, List[Tensor]]:
|
|
"""
|
|
Args:
|
|
x:
|
|
The input tensor. Its shape is (seq_len, batch_size, feature_dim).
|
|
x_lens:
|
|
A tensor of shape (batch_size,) containing the number of frames in
|
|
`x` before padding.
|
|
states: list of cached tensors of all encoder layers. For layer-i,
|
|
states[i*6:(i+1)*6] is (cached_key, cached_nonlin_attn, cached_val1, cached_val2,
|
|
cached_conv1, cached_conv2).
|
|
src_key_padding_mask:
|
|
The mask for padding, of shape (batch_size, seq_len); True means
|
|
masked position. May be None.
|
|
Returns:
|
|
Return a tuple containing 2 tensors:
|
|
- embeddings: its shape is (output_seq_len, batch_size, max(encoder_dim))
|
|
- lengths, a tensor of shape (batch_size,) containing the number
|
|
of frames in `embeddings` before padding.
|
|
- updated states
|
|
"""
|
|
outputs = []
|
|
new_states = []
|
|
layer_offset = 0
|
|
|
|
for i, module in enumerate(self.encoders):
|
|
num_layers = module.num_layers
|
|
ds = self.downsampling_factor[i]
|
|
x = convert_num_channels(x, self.encoder_dim[i])
|
|
|
|
x, new_layer_states = module.streaming_forward(
|
|
x,
|
|
states=states[layer_offset * 6 : (layer_offset + num_layers) * 6],
|
|
left_context_len=self.left_context_frames[0] // ds,
|
|
src_key_padding_mask=src_key_padding_mask[..., ::ds],
|
|
)
|
|
layer_offset += num_layers
|
|
outputs.append(x)
|
|
new_states += new_layer_states
|
|
|
|
# if the last output has the largest dimension, x will be unchanged,
|
|
# it will be the same as outputs[-1]. Otherwise it will be concatenated
|
|
# from different pieces of 'outputs', taking each dimension from the
|
|
# most recent output that has it present.
|
|
x = self._get_full_dim_output(outputs)
|
|
x = self.downsample_output(x)
|
|
# class Downsample has this rounding behavior..
|
|
assert self.output_downsampling_factor == 2
|
|
if torch.jit.is_scripting() or torch.jit.is_tracing():
|
|
lengths = (x_lens + 1) // 2
|
|
else:
|
|
with warnings.catch_warnings():
|
|
warnings.simplefilter("ignore")
|
|
lengths = (x_lens + 1) // 2
|
|
|
|
return x, lengths, new_states
|
|
|
|
@torch.jit.export
|
|
def get_init_states(
|
|
self,
|
|
batch_size: int = 1,
|
|
device: torch.device = torch.device("cpu"),
|
|
) -> List[Tensor]:
|
|
"""Get initial states.
|
|
|
|
A list of cached tensors of all encoder layers. For layer-i, states[i*6:(i+1)*6]
|
|
is (cached_key, cached_nonlin_attn, cached_val1, cached_val2, cached_conv1, cached_conv2).
|
|
"""
|
|
states = []
|
|
for i, module in enumerate(self.encoders):
|
|
num_layers = module.num_layers
|
|
embed_dim = self.encoder_dim[i]
|
|
ds = self.downsampling_factor[i]
|
|
num_heads = self.num_heads[i]
|
|
key_dim = self.query_head_dim[i] * num_heads
|
|
value_dim = self.value_head_dim[i] * num_heads
|
|
downsample_left = self.left_context_frames[0] // ds
|
|
nonlin_attn_head_dim = 3 * embed_dim // 4
|
|
conv_left_pad = self.cnn_module_kernel[i] // 2
|
|
for layer in range(num_layers):
|
|
cached_key = torch.zeros(downsample_left, batch_size, key_dim).to(
|
|
device
|
|
)
|
|
cached_nonlin_attn = torch.zeros(
|
|
1, batch_size, downsample_left, nonlin_attn_head_dim
|
|
).to(device)
|
|
cached_val1 = torch.zeros(downsample_left, batch_size, value_dim).to(
|
|
device
|
|
)
|
|
cached_val2 = torch.zeros(downsample_left, batch_size, value_dim).to(
|
|
device
|
|
)
|
|
cached_conv1 = torch.zeros(batch_size, embed_dim, conv_left_pad).to(
|
|
device
|
|
)
|
|
cached_conv2 = torch.zeros(batch_size, embed_dim, conv_left_pad).to(
|
|
device
|
|
)
|
|
states += [
|
|
cached_key,
|
|
cached_nonlin_attn,
|
|
cached_val1,
|
|
cached_val2,
|
|
cached_conv1,
|
|
cached_conv2,
|
|
]
|
|
|
|
return states
|
|
|
|
|
|
def _whitening_schedule(x: float, ratio: float = 2.0) -> ScheduledFloat:
|
|
return ScheduledFloat((0.0, x), (20000.0, ratio * x), default=x)
|
|
|
|
|
|
def _balancer_schedule(min_prob: float):
|
|
return ScheduledFloat((0.0, 0.4), (8000.0, min_prob))
|
|
|
|
|
|
class Zipformer2EncoderLayer(nn.Module):
|
|
"""
|
|
Args:
|
|
embed_dim: the number of expected features in the input (required).
|
|
nhead: the number of heads in the multiheadattention models (required).
|
|
feedforward_dim: the dimension of the feedforward network model (default=2048).
|
|
dropout: the dropout value (default=0.1).
|
|
cnn_module_kernel (int): Kernel size of convolution module.
|
|
|
|
Examples::
|
|
>>> encoder_layer = Zipformer2EncoderLayer(embed_dim=512, nhead=8)
|
|
>>> src = torch.rand(10, 32, 512)
|
|
>>> pos_emb = torch.rand(32, 19, 512)
|
|
>>> out = encoder_layer(src, pos_emb)
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
embed_dim: int,
|
|
pos_dim: int,
|
|
num_heads: int,
|
|
query_head_dim: int,
|
|
pos_head_dim: int,
|
|
value_head_dim: int,
|
|
feedforward_dim: int,
|
|
dropout: FloatLike = 0.1,
|
|
cnn_module_kernel: int = 31,
|
|
causal: bool = False,
|
|
attention_skip_rate: FloatLike = ScheduledFloat(
|
|
(0.0, 0.2), (4000.0, 0.05), (16000, 0.0), default=0
|
|
),
|
|
conv_skip_rate: FloatLike = ScheduledFloat(
|
|
(0.0, 0.2), (4000.0, 0.05), (16000, 0.0), default=0
|
|
),
|
|
const_attention_rate: FloatLike = ScheduledFloat(
|
|
(0.0, 0.25), (4000.0, 0.025), default=0
|
|
),
|
|
ff2_skip_rate: FloatLike = ScheduledFloat(
|
|
(0.0, 0.1), (4000.0, 0.01), (50000.0, 0.0)
|
|
),
|
|
ff3_skip_rate: FloatLike = ScheduledFloat(
|
|
(0.0, 0.1), (4000.0, 0.01), (50000.0, 0.0)
|
|
),
|
|
bypass_skip_rate: FloatLike = ScheduledFloat(
|
|
(0.0, 0.5), (4000.0, 0.02), default=0
|
|
),
|
|
) -> None:
|
|
super(Zipformer2EncoderLayer, self).__init__()
|
|
self.embed_dim = embed_dim
|
|
|
|
# self.bypass implements layer skipping as well as bypass; see its default values.
|
|
self.bypass = BypassModule(
|
|
embed_dim, skip_rate=bypass_skip_rate, straight_through_rate=0
|
|
)
|
|
# bypass_mid is bypass used in the middle of the layer.
|
|
self.bypass_mid = BypassModule(embed_dim, straight_through_rate=0)
|
|
|
|
# skip probability for dynamic modules (meaning: anything but feedforward).
|
|
self.attention_skip_rate = copy.deepcopy(attention_skip_rate)
|
|
# an additional skip probability that applies to ConvModule to stop it from
|
|
# contributing too much early on.
|
|
self.conv_skip_rate = copy.deepcopy(conv_skip_rate)
|
|
|
|
# ff2_skip_rate is to prevent the ff2 module from having output that's too big
|
|
# compared to its residual.
|
|
self.ff2_skip_rate = copy.deepcopy(ff2_skip_rate)
|
|
self.ff3_skip_rate = copy.deepcopy(ff3_skip_rate)
|
|
|
|
self.const_attention_rate = copy.deepcopy(const_attention_rate)
|
|
|
|
self.self_attn_weights = RelPositionMultiheadAttentionWeights(
|
|
embed_dim,
|
|
pos_dim=pos_dim,
|
|
num_heads=num_heads,
|
|
query_head_dim=query_head_dim,
|
|
pos_head_dim=pos_head_dim,
|
|
dropout=0.0,
|
|
)
|
|
|
|
self.self_attn1 = SelfAttention(embed_dim, num_heads, value_head_dim)
|
|
|
|
self.self_attn2 = SelfAttention(embed_dim, num_heads, value_head_dim)
|
|
|
|
self.feed_forward1 = FeedforwardModule(
|
|
embed_dim, (feedforward_dim * 3) // 4, dropout
|
|
)
|
|
|
|
self.feed_forward2 = FeedforwardModule(embed_dim, feedforward_dim, dropout)
|
|
|
|
self.feed_forward3 = FeedforwardModule(
|
|
embed_dim, (feedforward_dim * 5) // 4, dropout
|
|
)
|
|
|
|
self.nonlin_attention = NonlinAttention(
|
|
embed_dim, hidden_channels=3 * embed_dim // 4
|
|
)
|
|
|
|
self.conv_module1 = ConvolutionModule(
|
|
embed_dim, cnn_module_kernel, causal=causal
|
|
)
|
|
|
|
self.conv_module2 = ConvolutionModule(
|
|
embed_dim, cnn_module_kernel, causal=causal
|
|
)
|
|
|
|
# TODO: remove it
|
|
self.bypass_scale = nn.Parameter(torch.full((embed_dim,), 0.5))
|
|
|
|
self.norm = BiasNorm(embed_dim)
|
|
|
|
self.balancer1 = Balancer(
|
|
embed_dim,
|
|
channel_dim=-1,
|
|
min_positive=0.45,
|
|
max_positive=0.55,
|
|
min_abs=0.2,
|
|
max_abs=4.0,
|
|
)
|
|
|
|
# balancer for output of NonlinAttentionModule
|
|
self.balancer_na = Balancer(
|
|
embed_dim,
|
|
channel_dim=-1,
|
|
min_positive=0.3,
|
|
max_positive=0.7,
|
|
min_abs=ScheduledFloat((0.0, 0.004), (4000.0, 0.02)),
|
|
prob=0.05, # out of concern for memory usage
|
|
)
|
|
|
|
# balancer for output of feedforward2, prevent it from staying too
|
|
# small. give this a very small probability, even at the start of
|
|
# training, it's to fix a rare problem and it's OK to fix it slowly.
|
|
self.balancer_ff2 = Balancer(
|
|
embed_dim,
|
|
channel_dim=-1,
|
|
min_positive=0.3,
|
|
max_positive=0.7,
|
|
min_abs=ScheduledFloat((0.0, 0.0), (4000.0, 0.1), default=0.0),
|
|
max_abs=2.0,
|
|
prob=0.05,
|
|
)
|
|
|
|
self.balancer_ff3 = Balancer(
|
|
embed_dim,
|
|
channel_dim=-1,
|
|
min_positive=0.3,
|
|
max_positive=0.7,
|
|
min_abs=ScheduledFloat((0.0, 0.0), (4000.0, 0.2), default=0.0),
|
|
max_abs=4.0,
|
|
prob=0.05,
|
|
)
|
|
|
|
self.whiten = Whiten(
|
|
num_groups=1,
|
|
whitening_limit=_whitening_schedule(4.0, ratio=3.0),
|
|
prob=(0.025, 0.25),
|
|
grad_scale=0.01,
|
|
)
|
|
|
|
self.balancer2 = Balancer(
|
|
embed_dim,
|
|
channel_dim=-1,
|
|
min_positive=0.45,
|
|
max_positive=0.55,
|
|
min_abs=0.1,
|
|
max_abs=4.0,
|
|
)
|
|
|
|
def get_sequence_dropout_mask(
|
|
self, x: Tensor, dropout_rate: float
|
|
) -> Optional[Tensor]:
|
|
if (
|
|
dropout_rate == 0.0
|
|
or not self.training
|
|
or torch.jit.is_scripting()
|
|
or torch.jit.is_tracing()
|
|
):
|
|
return None
|
|
batch_size = x.shape[1]
|
|
mask = (torch.rand(batch_size, 1, device=x.device) > dropout_rate).to(x.dtype)
|
|
return mask
|
|
|
|
def sequence_dropout(self, x: Tensor, dropout_rate: float) -> Tensor:
|
|
"""
|
|
Apply sequence-level dropout to x.
|
|
x shape: (seq_len, batch_size, embed_dim)
|
|
"""
|
|
dropout_mask = self.get_sequence_dropout_mask(x, dropout_rate)
|
|
if dropout_mask is None:
|
|
return x
|
|
else:
|
|
return x * dropout_mask
|
|
|
|
def forward(
|
|
self,
|
|
src: Tensor,
|
|
pos_emb: Tensor,
|
|
chunk_size: int = -1,
|
|
attn_mask: Optional[Tensor] = None,
|
|
src_key_padding_mask: Optional[Tensor] = None,
|
|
) -> Tensor:
|
|
"""
|
|
Pass the input through the encoder layer.
|
|
Args:
|
|
src: the sequence to the encoder (required): shape (seq_len, batch_size, embedding_dim).
|
|
pos_emb: (1, 2*seq_len-1, pos_emb_dim) or (batch_size, 2*seq_len-1, pos_emb_dim)
|
|
chunk_size: the number of frames per chunk, of >= 0; if -1, no chunking.
|
|
feature_mask: something that broadcasts with src, that we'll multiply `src`
|
|
by at every layer: if a Tensor, likely of shape (seq_len, batch_size, embedding_dim)
|
|
attn_mask: the attention mask, of shape (batch_size, seq_len, seq_len) or (seq_len, seq_len),
|
|
interpreted as (batch_size, tgt_seq_len, src_seq_len) or (tgt_seq_len, src_seq_len).
|
|
True means masked position. May be None.
|
|
src_key_padding_mask: the mask for padding, of shape (batch_size, seq_len); True means
|
|
masked position. May be None.
|
|
|
|
Returns:
|
|
A tensor which has the same shape as src
|
|
"""
|
|
src_orig = src
|
|
|
|
# dropout rate for non-feedforward submodules
|
|
if torch.jit.is_scripting() or torch.jit.is_tracing():
|
|
attention_skip_rate = 0.0
|
|
else:
|
|
attention_skip_rate = (
|
|
float(self.attention_skip_rate) if self.training else 0.0
|
|
)
|
|
|
|
# attn_weights: (num_heads, batch_size, seq_len, seq_len)
|
|
attn_weights = self.self_attn_weights(
|
|
src,
|
|
pos_emb=pos_emb,
|
|
attn_mask=attn_mask,
|
|
key_padding_mask=src_key_padding_mask,
|
|
)
|
|
|
|
src = src + self.feed_forward1(src)
|
|
|
|
self_attn_dropout_mask = self.get_sequence_dropout_mask(
|
|
src, attention_skip_rate
|
|
)
|
|
|
|
selected_attn_weights = attn_weights[0:1]
|
|
if torch.jit.is_scripting() or torch.jit.is_tracing():
|
|
pass
|
|
elif not self.training and random.random() < float(self.const_attention_rate):
|
|
# Make attention weights constant. The intention is to
|
|
# encourage these modules to do something similar to an
|
|
# averaging-over-time operation.
|
|
# only need the mask, can just use the 1st one and expand later
|
|
selected_attn_weights = selected_attn_weights[0:1]
|
|
selected_attn_weights = (selected_attn_weights > 0.0).to(
|
|
selected_attn_weights.dtype
|
|
)
|
|
selected_attn_weights = selected_attn_weights * (
|
|
1.0 / selected_attn_weights.sum(dim=-1, keepdim=True)
|
|
)
|
|
|
|
na = self.balancer_na(self.nonlin_attention(src, selected_attn_weights))
|
|
|
|
src = src + (
|
|
na if self_attn_dropout_mask is None else na * self_attn_dropout_mask
|
|
)
|
|
|
|
self_attn = self.self_attn1(src, attn_weights)
|
|
|
|
src = src + (
|
|
self_attn
|
|
if self_attn_dropout_mask is None
|
|
else self_attn * self_attn_dropout_mask
|
|
)
|
|
|
|
if torch.jit.is_scripting() or torch.jit.is_tracing():
|
|
conv_skip_rate = 0.0
|
|
else:
|
|
conv_skip_rate = float(self.conv_skip_rate) if self.training else 0.0
|
|
src = src + self.sequence_dropout(
|
|
self.conv_module1(
|
|
src, chunk_size=chunk_size, src_key_padding_mask=src_key_padding_mask
|
|
),
|
|
conv_skip_rate,
|
|
)
|
|
|
|
if torch.jit.is_scripting() or torch.jit.is_tracing():
|
|
ff2_skip_rate = 0.0
|
|
else:
|
|
ff2_skip_rate = float(self.ff2_skip_rate) if self.training else 0.0
|
|
src = src + self.sequence_dropout(
|
|
self.balancer_ff2(self.feed_forward2(src)), ff2_skip_rate
|
|
)
|
|
|
|
# bypass in the middle of the layer.
|
|
src = self.bypass_mid(src_orig, src)
|
|
|
|
self_attn = self.self_attn2(src, attn_weights)
|
|
|
|
src = src + (
|
|
self_attn
|
|
if self_attn_dropout_mask is None
|
|
else self_attn * self_attn_dropout_mask
|
|
)
|
|
|
|
if torch.jit.is_scripting() or torch.jit.is_tracing():
|
|
conv_skip_rate = 0.0
|
|
else:
|
|
conv_skip_rate = float(self.conv_skip_rate) if self.training else 0.0
|
|
src = src + self.sequence_dropout(
|
|
self.conv_module2(
|
|
src, chunk_size=chunk_size, src_key_padding_mask=src_key_padding_mask
|
|
),
|
|
conv_skip_rate,
|
|
)
|
|
|
|
if torch.jit.is_scripting() or torch.jit.is_tracing():
|
|
ff3_skip_rate = 0.0
|
|
else:
|
|
ff3_skip_rate = float(self.ff3_skip_rate) if self.training else 0.0
|
|
src = src + self.sequence_dropout(
|
|
self.balancer_ff3(self.feed_forward3(src)), ff3_skip_rate
|
|
)
|
|
|
|
src = self.balancer1(src)
|
|
src = self.norm(src)
|
|
|
|
src = self.bypass(src_orig, src)
|
|
|
|
src = self.balancer2(src)
|
|
src = self.whiten(src)
|
|
|
|
return src
|
|
|
|
def streaming_forward(
|
|
self,
|
|
src: Tensor,
|
|
pos_emb: Tensor,
|
|
cached_key: Tensor,
|
|
cached_nonlin_attn: Tensor,
|
|
cached_val1: Tensor,
|
|
cached_val2: Tensor,
|
|
cached_conv1: Tensor,
|
|
cached_conv2: Tensor,
|
|
left_context_len: int,
|
|
src_key_padding_mask: Tensor,
|
|
) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor]:
|
|
"""Pass the input through the encoder layer in streaming forward mode.
|
|
|
|
Args:
|
|
src: the sequence to the encoder (required): shape (seq_len, batch_size, embedding_dim).
|
|
pos_emb: (1, left_context_len+2*seq_len-1, pos_emb_dim) or
|
|
(batch_size, left_context_len+2*seq_len-1, pos_emb_dim)
|
|
cached_key: cached attention key tensor of left context,
|
|
of shape (left_context_len, batch_size, key_dim)
|
|
cached_nonlin_attn: left context for nonlin_attention module, a Tensor of shape
|
|
(num_heads, batch_size, left_context_len, head_dim)
|
|
cached_val1: cached left context for the first attention module,
|
|
of shape (left_context_len, batch_size, value_dim)
|
|
cached_val2: cached left context for the second attention module,
|
|
of shape (left_context_len, batch_size, value_dim)
|
|
cached_conv1: cached left context for the first convolution module,
|
|
of shape (batch_size, channels, left_pad)
|
|
cached_conv2: cached left context for the second convolution module,
|
|
of shape (batch_size, channels, left_pad)
|
|
left_context_len: number of left context frames.
|
|
src_key_padding_mask: the mask for padding, of shape
|
|
(batch_size, left_context_len + seq_len); True means masked position.
|
|
May be None.
|
|
|
|
Returns:
|
|
- x, with the same shape as src
|
|
- updated cached_key
|
|
- updated cached_nonlin_attn
|
|
- updated cached_val1
|
|
- updated cached_val2
|
|
- updated cached_conv1
|
|
- updated cached_conv2
|
|
"""
|
|
src_orig = src
|
|
|
|
# attn_weights: (num_heads, batch_size, seq_len, seq_len)
|
|
attn_weights, cached_key = self.self_attn_weights.streaming_forward(
|
|
src,
|
|
pos_emb=pos_emb,
|
|
cached_key=cached_key,
|
|
left_context_len=left_context_len,
|
|
key_padding_mask=src_key_padding_mask,
|
|
)
|
|
|
|
src = src + self.feed_forward1(src)
|
|
|
|
na, cached_nonlin_attn = self.nonlin_attention.streaming_forward(
|
|
src,
|
|
attn_weights[0:1],
|
|
cached_x=cached_nonlin_attn,
|
|
left_context_len=left_context_len,
|
|
)
|
|
src = src + na
|
|
|
|
self_attn, cached_val1 = self.self_attn1.streaming_forward(
|
|
src,
|
|
attn_weights=attn_weights,
|
|
cached_val=cached_val1,
|
|
left_context_len=left_context_len,
|
|
)
|
|
src = src + self_attn
|
|
|
|
src_conv, cached_conv1 = self.conv_module1.streaming_forward(
|
|
src,
|
|
cache=cached_conv1,
|
|
src_key_padding_mask=src_key_padding_mask[:, left_context_len:],
|
|
)
|
|
src = src + src_conv
|
|
|
|
src = src + self.feed_forward2(src)
|
|
|
|
# bypass in the middle of the layer.
|
|
src = self.bypass_mid(src_orig, src)
|
|
|
|
self_attn, cached_val2 = self.self_attn2.streaming_forward(
|
|
src,
|
|
attn_weights=attn_weights,
|
|
cached_val=cached_val2,
|
|
left_context_len=left_context_len,
|
|
)
|
|
src = src + self_attn
|
|
|
|
src_conv, cached_conv2 = self.conv_module2.streaming_forward(
|
|
src,
|
|
cache=cached_conv2,
|
|
src_key_padding_mask=src_key_padding_mask[:, left_context_len:],
|
|
)
|
|
src = src + src_conv
|
|
|
|
src = src + self.feed_forward3(src)
|
|
|
|
src = self.norm(src)
|
|
|
|
src = self.bypass(src_orig, src)
|
|
|
|
return (
|
|
src,
|
|
cached_key,
|
|
cached_nonlin_attn,
|
|
cached_val1,
|
|
cached_val2,
|
|
cached_conv1,
|
|
cached_conv2,
|
|
)
|
|
|
|
|
|
class Zipformer2Encoder(nn.Module):
|
|
r"""Zipformer2Encoder is a stack of N encoder layers
|
|
|
|
Args:
|
|
encoder_layer: an instance of the Zipformer2EncoderLayer() class (required).
|
|
num_layers: the number of sub-encoder-layers in the encoder (required).
|
|
pos_dim: the dimension for the relative positional encoding
|
|
|
|
Examples::
|
|
>>> encoder_layer = Zipformer2EncoderLayer(embed_dim=512, nhead=8)
|
|
>>> zipformer_encoder = Zipformer2Encoder(encoder_layer, num_layers=6)
|
|
>>> src = torch.rand(10, 32, 512)
|
|
>>> out = zipformer_encoder(src)
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
encoder_layer: nn.Module,
|
|
num_layers: int,
|
|
pos_dim: int,
|
|
dropout: float,
|
|
warmup_begin: float,
|
|
warmup_end: float,
|
|
initial_layerdrop_rate: float = 0.5,
|
|
final_layerdrop_rate: float = 0.05,
|
|
) -> None:
|
|
super().__init__()
|
|
self.encoder_pos = CompactRelPositionalEncoding(
|
|
pos_dim, dropout_rate=0.15, length_factor=1.0
|
|
)
|
|
|
|
self.layers = nn.ModuleList(
|
|
[copy.deepcopy(encoder_layer) for i in range(num_layers)]
|
|
)
|
|
self.num_layers = num_layers
|
|
|
|
assert 0 <= warmup_begin <= warmup_end
|
|
|
|
delta = (1.0 / num_layers) * (warmup_end - warmup_begin)
|
|
cur_begin = warmup_begin # interpreted as a training batch index
|
|
for i in range(num_layers):
|
|
cur_end = cur_begin + delta
|
|
self.layers[i].bypass.skip_rate = ScheduledFloat(
|
|
(cur_begin, initial_layerdrop_rate),
|
|
(cur_end, final_layerdrop_rate),
|
|
default=0.0,
|
|
)
|
|
cur_begin = cur_end
|
|
|
|
def forward(
|
|
self,
|
|
src: Tensor,
|
|
chunk_size: int = -1,
|
|
feature_mask: Union[Tensor, float] = 1.0,
|
|
attn_mask: Optional[Tensor] = None,
|
|
src_key_padding_mask: Optional[Tensor] = None,
|
|
) -> Tensor:
|
|
r"""Pass the input through the encoder layers in turn.
|
|
|
|
Args:
|
|
src: the sequence to the encoder (required): shape (seq_len, batch_size, embedding_dim).
|
|
chunk_size: the number of frames per chunk, of >= 0; if -1, no chunking.
|
|
feature_mask: something that broadcasts with src, that we'll multiply `src`
|
|
by at every layer: if a Tensor, likely of shape (seq_len, batch_size, embedding_dim)
|
|
attn_mask: the attention mask, of shape (batch_size, seq_len, seq_len) or (seq_len, seq_len),
|
|
interpreted as (batch_size, tgt_seq_len, src_seq_len) or (tgt_seq_len, src_seq_len).
|
|
True means masked position. May be None.
|
|
src_key_padding_mask: the mask for padding, of shape (batch_size, seq_len); True means
|
|
masked position. May be None.
|
|
|
|
Returns: a Tensor with the same shape as src.
|
|
"""
|
|
pos_emb = self.encoder_pos(src)
|
|
output = src
|
|
|
|
if not torch.jit.is_scripting() and not torch.jit.is_tracing():
|
|
output = output * feature_mask
|
|
|
|
for i, mod in enumerate(self.layers):
|
|
output = mod(
|
|
output,
|
|
pos_emb,
|
|
chunk_size=chunk_size,
|
|
attn_mask=attn_mask,
|
|
src_key_padding_mask=src_key_padding_mask,
|
|
)
|
|
|
|
if not torch.jit.is_scripting() and not torch.jit.is_tracing():
|
|
output = output * feature_mask
|
|
|
|
return output
|
|
|
|
def streaming_forward(
|
|
self,
|
|
src: Tensor,
|
|
states: List[Tensor],
|
|
left_context_len: int,
|
|
src_key_padding_mask: Tensor,
|
|
) -> Tuple[Tensor, List[Tensor]]:
|
|
r"""Pass the input through the encoder layers in turn.
|
|
|
|
Args:
|
|
src: the sequence to the encoder (required): shape (seq_len, batch_size, embedding_dim).
|
|
states: list of cached tensors of N encoder layers. For layer-i, states[i*6:(i+1)*6] is
|
|
(cached_key, cached_nonlin_attn, cached_val1, cached_val2, cached_conv1, cached_conv2).
|
|
left_context_len: Number of left context frames.
|
|
src_key_padding_mask: the mask for padding, of shape
|
|
(batch_size, left_context_len + seq_len); True means masked position.
|
|
May be None.
|
|
|
|
Returns:
|
|
- output, a Tensor with the same shape as src.
|
|
- updated states
|
|
"""
|
|
pos_emb = self.encoder_pos(src, left_context_len)
|
|
output = src
|
|
|
|
new_states = []
|
|
for i, mod in enumerate(self.layers):
|
|
(
|
|
cached_key,
|
|
cached_nonlin_attn,
|
|
cached_val1,
|
|
cached_val2,
|
|
cached_conv1,
|
|
cached_conv2,
|
|
) = states[i * 6 : (i + 1) * 6]
|
|
(
|
|
output,
|
|
new_cached_key,
|
|
new_cached_nonlin_attn,
|
|
new_cached_val1,
|
|
new_cached_val2,
|
|
new_cached_conv1,
|
|
new_cached_conv2,
|
|
) = mod.streaming_forward(
|
|
output,
|
|
pos_emb,
|
|
cached_key=cached_key,
|
|
cached_nonlin_attn=cached_nonlin_attn,
|
|
cached_val1=cached_val1,
|
|
cached_val2=cached_val2,
|
|
cached_conv1=cached_conv1,
|
|
cached_conv2=cached_conv2,
|
|
left_context_len=left_context_len,
|
|
src_key_padding_mask=src_key_padding_mask,
|
|
)
|
|
new_states += [
|
|
new_cached_key,
|
|
new_cached_nonlin_attn,
|
|
new_cached_val1,
|
|
new_cached_val2,
|
|
new_cached_conv1,
|
|
new_cached_conv2,
|
|
]
|
|
|
|
return output, new_states
|
|
|
|
|
|
class BypassModule(nn.Module):
|
|
"""
|
|
An nn.Module that implements a learnable bypass scale, and also randomized per-sequence
|
|
layer-skipping. The bypass is limited during early stages of training to be close to
|
|
"straight-through", i.e. to not do the bypass operation much initially, in order to
|
|
force all the modules to learn something.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
embed_dim: int,
|
|
skip_rate: FloatLike = 0.0,
|
|
straight_through_rate: FloatLike = 0.0,
|
|
scale_min: FloatLike = ScheduledFloat((0.0, 0.9), (20000.0, 0.2), default=0),
|
|
scale_max: FloatLike = 1.0,
|
|
):
|
|
super().__init__()
|
|
self.bypass_scale = nn.Parameter(torch.full((embed_dim,), 0.5))
|
|
self.skip_rate = copy.deepcopy(skip_rate)
|
|
self.straight_through_rate = copy.deepcopy(straight_through_rate)
|
|
self.scale_min = copy.deepcopy(scale_min)
|
|
self.scale_max = copy.deepcopy(scale_max)
|
|
|
|
def _get_bypass_scale(self, batch_size: int):
|
|
# returns bypass-scale of shape (num_channels,),
|
|
# or (batch_size, num_channels,). This is actually the
|
|
# scale on the non-residual term, so 0 correponds to bypassing
|
|
# this module.
|
|
if torch.jit.is_scripting() or torch.jit.is_tracing() or not self.training:
|
|
return self.bypass_scale
|
|
else:
|
|
ans = limit_param_value(
|
|
self.bypass_scale, min=float(self.scale_min), max=float(self.scale_max)
|
|
)
|
|
skip_rate = float(self.skip_rate)
|
|
if skip_rate != 0.0:
|
|
mask = torch.rand((batch_size, 1), device=ans.device) > skip_rate
|
|
ans = ans * mask
|
|
# now ans is of shape (batch_size, num_channels), and is zero for sequences
|
|
# on which we have randomly chosen to do layer-skipping.
|
|
straight_through_rate = float(self.straight_through_rate)
|
|
if straight_through_rate != 0.0:
|
|
mask = (
|
|
torch.rand((batch_size, 1), device=ans.device)
|
|
< straight_through_rate
|
|
)
|
|
ans = torch.maximum(ans, mask.to(ans.dtype))
|
|
return ans
|
|
|
|
def forward(self, src_orig: Tensor, src: Tensor):
|
|
"""
|
|
Args: src_orig and src are both of shape (seq_len, batch_size, num_channels)
|
|
Returns: something with the same shape as src and src_orig
|
|
"""
|
|
bypass_scale = self._get_bypass_scale(src.shape[1])
|
|
return src_orig + (src - src_orig) * bypass_scale
|
|
|
|
|
|
class DownsampledZipformer2Encoder(nn.Module):
|
|
r"""
|
|
DownsampledZipformer2Encoder is a zipformer encoder evaluated at a reduced frame rate,
|
|
after convolutional downsampling, and then upsampled again at the output, and combined
|
|
with the origin input, so that the output has the same shape as the input.
|
|
"""
|
|
|
|
def __init__(
|
|
self, encoder: nn.Module, dim: int, downsample: int, dropout: FloatLike
|
|
):
|
|
super(DownsampledZipformer2Encoder, self).__init__()
|
|
self.downsample_factor = downsample
|
|
self.downsample = SimpleDownsample(dim, downsample, dropout)
|
|
self.num_layers = encoder.num_layers
|
|
self.encoder = encoder
|
|
self.upsample = SimpleUpsample(dim, downsample)
|
|
self.out_combiner = BypassModule(dim, straight_through_rate=0)
|
|
|
|
def forward(
|
|
self,
|
|
src: Tensor,
|
|
chunk_size: int = -1,
|
|
feature_mask: Union[Tensor, float] = 1.0,
|
|
attn_mask: Optional[Tensor] = None,
|
|
src_key_padding_mask: Optional[Tensor] = None,
|
|
) -> Tensor:
|
|
r"""Downsample, go through encoder, upsample.
|
|
|
|
Args:
|
|
src: the sequence to the encoder (required): shape (seq_len, batch_size, embedding_dim).
|
|
feature_mask: something that broadcasts with src, that we'll multiply `src`
|
|
by at every layer: if a Tensor, likely of shape (seq_len, batch_size, embedding_dim)
|
|
attn_mask: the attention mask, of shape (batch_size, seq_len, seq_len) or (seq_len, seq_len),
|
|
interpreted as (batch_size, tgt_seq_len, src_seq_len) or (tgt_seq_len, src_seq_len).
|
|
True means masked position. May be None.
|
|
src_key_padding_mask: the mask for padding, of shape (batch_size, seq_len); True means
|
|
masked position. May be None.
|
|
|
|
Returns: a Tensor with the same shape as src.
|
|
"""
|
|
src_orig = src
|
|
src = self.downsample(src)
|
|
ds = self.downsample_factor
|
|
if attn_mask is not None:
|
|
attn_mask = attn_mask[::ds, ::ds]
|
|
|
|
src = self.encoder(
|
|
src,
|
|
chunk_size=chunk_size // ds,
|
|
feature_mask=feature_mask,
|
|
attn_mask=attn_mask,
|
|
src_key_padding_mask=src_key_padding_mask,
|
|
)
|
|
src = self.upsample(src)
|
|
# remove any extra frames that are not a multiple of downsample_factor
|
|
src = src[: src_orig.shape[0]]
|
|
|
|
return self.out_combiner(src_orig, src)
|
|
|
|
def streaming_forward(
|
|
self,
|
|
src: Tensor,
|
|
states: List[Tensor],
|
|
left_context_len: int,
|
|
src_key_padding_mask: Tensor,
|
|
) -> Tuple[Tensor, List[Tensor]]:
|
|
r"""Downsample, go through encoder, upsample, in streaming forward mode.
|
|
|
|
Args:
|
|
src: the sequence to the encoder (required): shape (seq_len, batch_size, embedding_dim).
|
|
states: list of cached tensors of N encoder layers. For layer-i, states[i*6:(i+1)*6] is
|
|
(cached_key, cached_nonlin_attn, cached_val1, cached_val2, cached_conv1, cached_conv2).
|
|
left_context_len: Number of left context frames.
|
|
src_key_padding_mask: the mask for padding, of shape (batch_size, left_context_len+seq_len);
|
|
True means masked position. May be None.
|
|
|
|
Returns:
|
|
- output, a Tensor with the same shape as src.
|
|
- updated states
|
|
"""
|
|
src_orig = src
|
|
src = self.downsample(src)
|
|
|
|
src, new_states = self.encoder.streaming_forward(
|
|
src,
|
|
states=states,
|
|
left_context_len=left_context_len,
|
|
src_key_padding_mask=src_key_padding_mask,
|
|
)
|
|
src = self.upsample(src)
|
|
# remove any extra frames that are not a multiple of downsample_factor
|
|
src = src[: src_orig.shape[0]]
|
|
|
|
return self.out_combiner(src_orig, src), new_states
|
|
|
|
|
|
class SimpleDownsample(torch.nn.Module):
|
|
"""
|
|
Does downsampling with attention, by weighted sum, and a projection..
|
|
"""
|
|
|
|
def __init__(self, channels: int, downsample: int, dropout: FloatLike):
|
|
super(SimpleDownsample, self).__init__()
|
|
|
|
self.bias = nn.Parameter(torch.zeros(downsample))
|
|
|
|
self.name = None # will be set from training code
|
|
self.dropout = copy.deepcopy(dropout)
|
|
|
|
self.downsample = downsample
|
|
|
|
def forward(self, src: Tensor) -> Tensor:
|
|
"""
|
|
x: (seq_len, batch_size, in_channels)
|
|
Returns a tensor of shape
|
|
( (seq_len+downsample-1)//downsample, batch_size, channels)
|
|
"""
|
|
(seq_len, batch_size, in_channels) = src.shape
|
|
ds = self.downsample
|
|
d_seq_len = (seq_len + ds - 1) // ds
|
|
|
|
# Pad to an exact multiple of self.downsample
|
|
# right-pad src, repeating the last element.
|
|
pad = d_seq_len * ds - seq_len
|
|
src_extra = src[src.shape[0] - 1 :].expand(pad, src.shape[1], src.shape[2])
|
|
src = torch.cat((src, src_extra), dim=0)
|
|
assert src.shape[0] == d_seq_len * ds
|
|
|
|
src = src.reshape(d_seq_len, ds, batch_size, in_channels)
|
|
|
|
weights = self.bias.softmax(dim=0)
|
|
# weights: (downsample, 1, 1)
|
|
weights = weights.unsqueeze(-1).unsqueeze(-1)
|
|
|
|
# ans1 is the first `in_channels` channels of the output
|
|
ans = (src * weights).sum(dim=1)
|
|
|
|
return ans
|
|
|
|
|
|
class SimpleUpsample(torch.nn.Module):
|
|
"""
|
|
A very simple form of upsampling that mostly just repeats the input, but
|
|
also adds a position-specific bias.
|
|
"""
|
|
|
|
def __init__(self, num_channels: int, upsample: int):
|
|
super(SimpleUpsample, self).__init__()
|
|
self.upsample = upsample
|
|
|
|
def forward(self, src: Tensor) -> Tensor:
|
|
"""
|
|
x: (seq_len, batch_size, num_channels)
|
|
Returns a tensor of shape
|
|
( (seq_len*upsample), batch_size, num_channels)
|
|
"""
|
|
upsample = self.upsample
|
|
(seq_len, batch_size, num_channels) = src.shape
|
|
src = src.unsqueeze(1).expand(seq_len, upsample, batch_size, num_channels)
|
|
src = src.reshape(seq_len * upsample, batch_size, num_channels)
|
|
return src
|
|
|
|
|
|
class CompactRelPositionalEncoding(torch.nn.Module):
|
|
"""
|
|
Relative positional encoding module. This version is "compact" meaning it is able to encode
|
|
the important information about the relative position in a relatively small number of dimensions.
|
|
The goal is to make it so that small differences between large relative offsets (e.g. 1000 vs. 1001)
|
|
make very little difference to the embedding. Such differences were potentially important
|
|
when encoding absolute position, but not important when encoding relative position because there
|
|
is now no need to compare two large offsets with each other.
|
|
|
|
Our embedding works done by projecting the interval [-infinity,infinity] to a finite interval
|
|
using the atan() function, before doing the fourier transform of that fixed interval. The
|
|
atan() function would compress the "long tails" too small,
|
|
making it hard to distinguish between different magnitudes of large offsets, so we use a logarithmic
|
|
function to compress large offsets to a smaller range before applying atan().
|
|
Scalings are chosen in such a way that the embedding can clearly distinguish invidual offsets as long
|
|
as they are quite close to the origin, e.g. abs(offset) <= about sqrt(embedding_dim)
|
|
|
|
|
|
Args:
|
|
embed_dim: Embedding dimension.
|
|
dropout_rate: Dropout rate.
|
|
max_len: Maximum input length: just a heuristic for initialization.
|
|
length_factor: a heuristic scale (should be >= 1.0) which, if larger, gives
|
|
less weight to small differences of offset near the origin.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
embed_dim: int,
|
|
dropout_rate: FloatLike,
|
|
max_len: int = 1000,
|
|
length_factor: float = 1.0,
|
|
) -> None:
|
|
"""Construct a CompactRelPositionalEncoding object."""
|
|
super(CompactRelPositionalEncoding, self).__init__()
|
|
self.embed_dim = embed_dim
|
|
assert embed_dim % 2 == 0
|
|
self.dropout = Dropout2(dropout_rate)
|
|
self.pe = None
|
|
assert length_factor >= 1.0
|
|
self.length_factor = length_factor
|
|
self.extend_pe(torch.tensor(0.0).expand(max_len))
|
|
|
|
def extend_pe(self, x: Tensor, left_context_len: int = 0) -> None:
|
|
"""Reset the positional encodings."""
|
|
T = x.size(0) + left_context_len
|
|
|
|
if self.pe is not None:
|
|
# self.pe contains both positive and negative parts
|
|
# the length of self.pe is 2 * input_len - 1
|
|
if self.pe.size(0) >= T * 2 - 1:
|
|
self.pe = self.pe.to(dtype=x.dtype, device=x.device)
|
|
return
|
|
|
|
# if T == 4, x would contain [ -3, -2, 1, 0, 1, 2, 3 ]
|
|
x = torch.arange(-(T - 1), T, device=x.device).to(torch.float32).unsqueeze(1)
|
|
|
|
freqs = 1 + torch.arange(self.embed_dim // 2, device=x.device)
|
|
|
|
# `compression_length` this is arbitrary/heuristic, if it is larger we have more resolution
|
|
# for small time offsets but less resolution for large time offsets.
|
|
compression_length = self.embed_dim**0.5
|
|
# x_compressed, like X, goes from -infinity to infinity as T goes from -infinity to infinity;
|
|
# but it does so more slowly than T for large absolute values of T.
|
|
# The formula is chosen so that d(x_compressed )/dx is 1 around x == 0, which
|
|
# is important.
|
|
x_compressed = (
|
|
compression_length
|
|
* x.sign()
|
|
* ((x.abs() + compression_length).log() - math.log(compression_length))
|
|
)
|
|
|
|
# if self.length_factor == 1.0, then length_scale is chosen so that the
|
|
# FFT can exactly separate points close to the origin (T == 0). So this
|
|
# part of the formulation is not really heuristic.
|
|
# But empirically, for ASR at least, length_factor > 1.0 seems to work better.
|
|
length_scale = self.length_factor * self.embed_dim / (2.0 * math.pi)
|
|
|
|
# note for machine implementations: if atan is not available, we can use:
|
|
# x.sign() * ((1 / (x.abs() + 1)) - 1) * (-math.pi/2)
|
|
# check on wolframalpha.com: plot(sign(x) * (1 / ( abs(x) + 1) - 1 ) * -pi/2 , atan(x))
|
|
x_atan = (x_compressed / length_scale).atan() # results between -pi and pi
|
|
|
|
cosines = (x_atan * freqs).cos()
|
|
sines = (x_atan * freqs).sin()
|
|
|
|
pe = torch.zeros(x.shape[0], self.embed_dim, device=x.device)
|
|
pe[:, 0::2] = cosines
|
|
pe[:, 1::2] = sines
|
|
pe[:, -1] = 1.0 # for bias.
|
|
|
|
self.pe = pe.to(dtype=x.dtype)
|
|
|
|
def forward(self, x: Tensor, left_context_len: int = 0) -> Tensor:
|
|
"""Create positional encoding.
|
|
|
|
Args:
|
|
x (Tensor): Input tensor (time, batch, `*`).
|
|
left_context_len: (int): Length of cached left context.
|
|
|
|
Returns:
|
|
positional embedding, of shape (batch, left_context_len + 2*time-1, `*`).
|
|
"""
|
|
self.extend_pe(x, left_context_len)
|
|
x_size_left = x.size(0) + left_context_len
|
|
# length of positive side: x.size(0) + left_context_len
|
|
# length of negative side: x.size(0)
|
|
pos_emb = self.pe[
|
|
self.pe.size(0) // 2
|
|
- x_size_left
|
|
+ 1 : self.pe.size(0) // 2 # noqa E203
|
|
+ x.size(0),
|
|
:,
|
|
]
|
|
pos_emb = pos_emb.unsqueeze(0)
|
|
return self.dropout(pos_emb)
|
|
|
|
|
|
class RelPositionMultiheadAttentionWeights(nn.Module):
|
|
r"""Module that computes multi-head attention weights with relative position encoding.
|
|
Various other modules consume the resulting attention weights: see, for example, the
|
|
SimpleAttention module which allows you to compute conventional attention.
|
|
|
|
This is a quite heavily modified from: "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context",
|
|
we have to write up the differences.
|
|
|
|
|
|
Args:
|
|
embed_dim: number of channels at the input to this module, e.g. 256
|
|
pos_dim: dimension of the positional encoding vectors, e.g. 128.
|
|
num_heads: number of heads to compute weights for, e.g. 8
|
|
query_head_dim: dimension of the query (and key), per head. e.g. 24.
|
|
pos_head_dim: dimension of the projected positional encoding per head, e.g. 4.
|
|
dropout: dropout probability for attn_output_weights. Default: 0.0.
|
|
pos_emb_skip_rate: probability for skipping the pos_emb part of the scores on
|
|
any given call to forward(), in training time.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
embed_dim: int,
|
|
pos_dim: int,
|
|
num_heads: int,
|
|
query_head_dim: int,
|
|
pos_head_dim: int,
|
|
dropout: float = 0.0,
|
|
pos_emb_skip_rate: FloatLike = ScheduledFloat((0.0, 0.5), (4000.0, 0.0)),
|
|
) -> None:
|
|
super().__init__()
|
|
self.embed_dim = embed_dim
|
|
self.num_heads = num_heads
|
|
self.query_head_dim = query_head_dim
|
|
self.pos_head_dim = pos_head_dim
|
|
self.dropout = dropout
|
|
self.pos_emb_skip_rate = copy.deepcopy(pos_emb_skip_rate)
|
|
self.name = None # will be overwritten in training code; for diagnostics.
|
|
|
|
key_head_dim = query_head_dim
|
|
in_proj_dim = (query_head_dim + key_head_dim + pos_head_dim) * num_heads
|
|
|
|
# the initial_scale is supposed to take over the "scaling" factor of
|
|
# head_dim ** -0.5 that has been used in previous forms of attention,
|
|
# dividing it between the query and key. Note: this module is intended
|
|
# to be used with the ScaledAdam optimizer; with most other optimizers,
|
|
# it would be necessary to apply the scaling factor in the forward function.
|
|
self.in_proj = ScaledLinear(
|
|
embed_dim, in_proj_dim, bias=True, initial_scale=query_head_dim**-0.25
|
|
)
|
|
|
|
self.whiten_keys = Whiten(
|
|
num_groups=num_heads,
|
|
whitening_limit=_whitening_schedule(3.0),
|
|
prob=(0.025, 0.25),
|
|
grad_scale=0.025,
|
|
)
|
|
|
|
# add a balancer for the keys that runs with very small probability, and
|
|
# tries to enforce that all dimensions have mean around zero. The
|
|
# weights produced by this module are invariant to adding a constant to
|
|
# the keys, so the derivative of the bias is mathematically zero; but
|
|
# due to how Adam/ScaledAdam work, it can learn a fairly large nonzero
|
|
# bias because the small numerical roundoff tends to have a non-random
|
|
# sign. This module is intended to prevent that. Use a very small
|
|
# probability; that should be suffixient to fix the problem.
|
|
self.balance_keys = Balancer(
|
|
key_head_dim * num_heads,
|
|
channel_dim=-1,
|
|
min_positive=0.4,
|
|
max_positive=0.6,
|
|
min_abs=0.0,
|
|
max_abs=100.0,
|
|
prob=0.025,
|
|
)
|
|
|
|
# linear transformation for positional encoding.
|
|
self.linear_pos = ScaledLinear(
|
|
pos_dim, num_heads * pos_head_dim, bias=False, initial_scale=0.05
|
|
)
|
|
|
|
# the following are for diagnosics only, see --print-diagnostics option
|
|
self.copy_pos_query = Identity()
|
|
self.copy_query = Identity()
|
|
|
|
def forward(
|
|
self,
|
|
x: Tensor,
|
|
pos_emb: Tensor,
|
|
key_padding_mask: Optional[Tensor] = None,
|
|
attn_mask: Optional[Tensor] = None,
|
|
) -> Tensor:
|
|
r"""
|
|
Args:
|
|
x: input of shape (seq_len, batch_size, embed_dim)
|
|
pos_emb: Positional embedding tensor, of shape (1, 2*seq_len - 1, pos_dim)
|
|
key_padding_mask: a bool tensor of shape (batch_size, seq_len). Positions that
|
|
are True in this mask will be ignored as sources in the attention weighting.
|
|
attn_mask: mask of shape (seq_len, seq_len) or (batch_size, seq_len, seq_len),
|
|
interpreted as ([batch_size,] tgt_seq_len, src_seq_len)
|
|
saying which positions are allowed to attend to which other positions.
|
|
Returns:
|
|
a tensor of attention weights, of shape (hum_heads, batch_size, seq_len, seq_len)
|
|
interpreted as (hum_heads, batch_size, tgt_seq_len, src_seq_len).
|
|
"""
|
|
x = self.in_proj(x)
|
|
query_head_dim = self.query_head_dim
|
|
pos_head_dim = self.pos_head_dim
|
|
num_heads = self.num_heads
|
|
|
|
seq_len, batch_size, _ = x.shape
|
|
|
|
query_dim = query_head_dim * num_heads
|
|
|
|
# self-attention
|
|
q = x[..., 0:query_dim]
|
|
k = x[..., query_dim : 2 * query_dim]
|
|
# p is the position-encoding query
|
|
p = x[..., 2 * query_dim :]
|
|
assert p.shape[-1] == num_heads * pos_head_dim
|
|
|
|
q = self.copy_query(q) # for diagnostics only, does nothing.
|
|
k = self.whiten_keys(self.balance_keys(k)) # does nothing in the forward pass.
|
|
p = self.copy_pos_query(p) # for diagnostics only, does nothing.
|
|
|
|
q = q.reshape(seq_len, batch_size, num_heads, query_head_dim)
|
|
p = p.reshape(seq_len, batch_size, num_heads, pos_head_dim)
|
|
k = k.reshape(seq_len, batch_size, num_heads, query_head_dim)
|
|
|
|
# time1 refers to target, time2 refers to source.
|
|
q = q.permute(2, 1, 0, 3) # (head, batch, time1, query_head_dim)
|
|
p = p.permute(2, 1, 0, 3) # (head, batch, time1, pos_head_dim)
|
|
k = k.permute(2, 1, 3, 0) # (head, batch, d_k, time2)
|
|
|
|
attn_scores = torch.matmul(q, k)
|
|
|
|
use_pos_scores = False
|
|
if torch.jit.is_scripting() or torch.jit.is_tracing():
|
|
# We can't put random.random() in the same line
|
|
use_pos_scores = True
|
|
elif not self.training or random.random() >= float(self.pos_emb_skip_rate):
|
|
use_pos_scores = True
|
|
|
|
if use_pos_scores:
|
|
pos_emb = self.linear_pos(pos_emb)
|
|
seq_len2 = 2 * seq_len - 1
|
|
pos_emb = pos_emb.reshape(-1, seq_len2, num_heads, pos_head_dim).permute(
|
|
2, 0, 3, 1
|
|
)
|
|
# pos shape now: (head, {1 or batch_size}, pos_dim, seq_len2)
|
|
|
|
# (head, batch, time1, pos_dim) x (head, 1, pos_dim, seq_len2) -> (head, batch, time1, seq_len2)
|
|
# [where seq_len2 represents relative position.]
|
|
pos_scores = torch.matmul(p, pos_emb)
|
|
# the following .as_strided() expression converts the last axis of pos_scores from relative
|
|
# to absolute position. I don't know whether I might have got the time-offsets backwards or
|
|
# not, but let this code define which way round it is supposed to be.
|
|
if torch.jit.is_tracing():
|
|
(num_heads, batch_size, time1, n) = pos_scores.shape
|
|
rows = torch.arange(start=time1 - 1, end=-1, step=-1)
|
|
cols = torch.arange(seq_len)
|
|
rows = rows.repeat(batch_size * num_heads).unsqueeze(-1)
|
|
indexes = rows + cols
|
|
pos_scores = pos_scores.reshape(-1, n)
|
|
pos_scores = torch.gather(pos_scores, dim=1, index=indexes)
|
|
pos_scores = pos_scores.reshape(num_heads, batch_size, time1, seq_len)
|
|
else:
|
|
pos_scores = pos_scores.as_strided(
|
|
(num_heads, batch_size, seq_len, seq_len),
|
|
(
|
|
pos_scores.stride(0),
|
|
pos_scores.stride(1),
|
|
pos_scores.stride(2) - pos_scores.stride(3),
|
|
pos_scores.stride(3),
|
|
),
|
|
storage_offset=pos_scores.stride(3) * (seq_len - 1),
|
|
)
|
|
|
|
attn_scores = attn_scores + pos_scores
|
|
|
|
if torch.jit.is_scripting() or torch.jit.is_tracing():
|
|
pass
|
|
elif self.training and random.random() < 0.1:
|
|
# This is a harder way of limiting the attention scores to not be
|
|
# too large. It incurs a penalty if any of them has an absolute
|
|
# value greater than 50.0. this should be outside the normal range
|
|
# of the attention scores. We use this mechanism instead of, say,
|
|
# something added to the loss function involving the entropy,
|
|
# because once the entropy gets very small gradients through the
|
|
# softmax can become very small, and we'd get zero derivatives. The
|
|
# choices of 1.0e-04 as the scale on the penalty makes this
|
|
# mechanism vulnerable to the absolute scale of the loss function,
|
|
# but we view this as a failsafe to avoid "implausible" parameter
|
|
# values rather than a regularization method that should be active
|
|
# under normal circumstances.
|
|
attn_scores = penalize_abs_values_gt(
|
|
attn_scores, limit=25.0, penalty=1.0e-04, name=self.name
|
|
)
|
|
|
|
assert attn_scores.shape == (num_heads, batch_size, seq_len, seq_len)
|
|
|
|
if attn_mask is not None:
|
|
assert attn_mask.dtype == torch.bool
|
|
# use -1000 to avoid nan's where attn_mask and key_padding_mask make
|
|
# all scores zero. It's important that this be large enough that exp(-1000)
|
|
# is exactly zero, for reasons related to const_attention_rate, it
|
|
# compares the final weights with zero.
|
|
attn_scores = attn_scores.masked_fill(attn_mask, -1000)
|
|
|
|
if key_padding_mask is not None:
|
|
assert key_padding_mask.shape == (
|
|
batch_size,
|
|
seq_len,
|
|
), key_padding_mask.shape
|
|
attn_scores = attn_scores.masked_fill(
|
|
key_padding_mask.unsqueeze(1),
|
|
-1000,
|
|
)
|
|
|
|
# We use our own version of softmax, defined in scaling.py, which should
|
|
# save a little of the memory used in backprop by, if we are in
|
|
# automatic mixed precision mode (amp / autocast), by only storing the
|
|
# half-precision output for backprop purposes.
|
|
attn_weights = softmax(attn_scores, dim=-1)
|
|
|
|
if torch.jit.is_scripting() or torch.jit.is_tracing():
|
|
pass
|
|
elif random.random() < 0.001 and not self.training:
|
|
self._print_attn_entropy(attn_weights)
|
|
|
|
attn_weights = nn.functional.dropout(
|
|
attn_weights, p=self.dropout, training=self.training
|
|
)
|
|
|
|
return attn_weights
|
|
|
|
def streaming_forward(
|
|
self,
|
|
x: Tensor,
|
|
pos_emb: Tensor,
|
|
cached_key: Tensor,
|
|
left_context_len: int,
|
|
key_padding_mask: Tensor,
|
|
) -> Tuple[Tensor, Tensor]:
|
|
r"""
|
|
Args:
|
|
x: input of shape (seq_len, batch_size, embed_dim)
|
|
pos_emb: Positional embedding tensor, of shape (1, left_context_len+2*seq_len-1, pos_dim)
|
|
cached_key: cached attention key tensor of left context,
|
|
of shape (left_context_len, batch_size, key_dim)
|
|
left_context_len: number of left context frames.
|
|
key_padding_mask: a bool tensor of shape (batch_size, seq_len). Positions that
|
|
are True in this mask will be ignored as sources in the attention weighting.
|
|
|
|
Returns:
|
|
- attention weights, of shape (hum_heads, batch_size, seq_len, seq_len2),
|
|
interpreted as (hum_heads, batch_size, tgt_seq_len, src_seq_len).
|
|
- updated cached attention key tensor of left context.
|
|
"""
|
|
x = self.in_proj(x)
|
|
query_head_dim = self.query_head_dim
|
|
pos_head_dim = self.pos_head_dim
|
|
num_heads = self.num_heads
|
|
|
|
seq_len, batch_size, _ = x.shape
|
|
|
|
query_dim = query_head_dim * num_heads
|
|
|
|
# self-attention
|
|
q = x[..., 0:query_dim]
|
|
k = x[..., query_dim : 2 * query_dim]
|
|
# p is the position-encoding query
|
|
p = x[..., 2 * query_dim :]
|
|
assert p.shape[-1] == num_heads * pos_head_dim
|
|
|
|
# Pad cached left contexts
|
|
assert cached_key.shape[0] == left_context_len, (
|
|
cached_key.shape[0],
|
|
left_context_len,
|
|
)
|
|
k = torch.cat([cached_key, k], dim=0)
|
|
# Update cached left contexts
|
|
cached_key = k[-left_context_len:, ...]
|
|
|
|
# The length of key
|
|
k_len = k.shape[0]
|
|
|
|
q = q.reshape(seq_len, batch_size, num_heads, query_head_dim)
|
|
p = p.reshape(seq_len, batch_size, num_heads, pos_head_dim)
|
|
k = k.reshape(k_len, batch_size, num_heads, query_head_dim)
|
|
|
|
# time1 refers to target, time2 refers to source.
|
|
q = q.permute(2, 1, 0, 3) # (head, batch, time1, query_head_dim)
|
|
p = p.permute(2, 1, 0, 3) # (head, batch, time1, pos_head_dim)
|
|
k = k.permute(2, 1, 3, 0) # (head, batch, d_k, time2)
|
|
|
|
attn_scores = torch.matmul(q, k)
|
|
|
|
pos_emb = self.linear_pos(pos_emb)
|
|
seq_len2 = 2 * seq_len - 1 + left_context_len
|
|
pos_emb = pos_emb.reshape(-1, seq_len2, num_heads, pos_head_dim).permute(
|
|
2, 0, 3, 1
|
|
)
|
|
# pos shape now: (head, {1 or batch_size}, pos_dim, seq_len2)
|
|
|
|
# (head, batch, time1, pos_dim) x (head, 1, pos_dim, seq_len2) -> (head, batch, time1, seq_len2)
|
|
# [where seq_len2 represents relative position.]
|
|
pos_scores = torch.matmul(p, pos_emb)
|
|
|
|
if torch.jit.is_tracing():
|
|
(num_heads, batch_size, time1, n) = pos_scores.shape
|
|
rows = torch.arange(start=time1 - 1, end=-1, step=-1)
|
|
cols = torch.arange(k_len)
|
|
rows = rows.repeat(batch_size * num_heads).unsqueeze(-1)
|
|
indexes = rows + cols
|
|
pos_scores = pos_scores.reshape(-1, n)
|
|
pos_scores = torch.gather(pos_scores, dim=1, index=indexes)
|
|
pos_scores = pos_scores.reshape(num_heads, batch_size, time1, k_len)
|
|
# the following .as_strided() expression converts the last axis of pos_scores from relative
|
|
# to absolute position. I don't know whether I might have got the time-offsets backwards or
|
|
# not, but let this code define which way round it is supposed to be.
|
|
else:
|
|
pos_scores = pos_scores.as_strided(
|
|
(num_heads, batch_size, seq_len, k_len),
|
|
(
|
|
pos_scores.stride(0),
|
|
pos_scores.stride(1),
|
|
pos_scores.stride(2) - pos_scores.stride(3),
|
|
pos_scores.stride(3),
|
|
),
|
|
storage_offset=pos_scores.stride(3) * (seq_len - 1),
|
|
)
|
|
|
|
attn_scores = attn_scores + pos_scores
|
|
|
|
assert attn_scores.shape == (
|
|
num_heads,
|
|
batch_size,
|
|
seq_len,
|
|
k_len,
|
|
), attn_scores.shape
|
|
|
|
if key_padding_mask is not None:
|
|
assert key_padding_mask.shape == (batch_size, k_len), key_padding_mask.shape
|
|
attn_scores = attn_scores.masked_fill(
|
|
key_padding_mask.unsqueeze(1),
|
|
-1000,
|
|
)
|
|
|
|
attn_weights = attn_scores.softmax(dim=-1)
|
|
|
|
return attn_weights, cached_key
|
|
|
|
def _print_attn_entropy(self, attn_weights: Tensor):
|
|
# attn_weights: (num_heads, batch_size, seq_len, seq_len)
|
|
(num_heads, batch_size, seq_len, seq_len) = attn_weights.shape
|
|
|
|
with torch.no_grad():
|
|
with torch.cuda.amp.autocast(enabled=False):
|
|
attn_weights = attn_weights.to(torch.float32)
|
|
attn_weights_entropy = (
|
|
-((attn_weights + 1.0e-20).log() * attn_weights)
|
|
.sum(dim=-1)
|
|
.mean(dim=(1, 2))
|
|
)
|
|
logging.info(
|
|
f"name={self.name}, attn_weights_entropy = {attn_weights_entropy}"
|
|
)
|
|
|
|
|
|
class SelfAttention(nn.Module):
|
|
"""
|
|
The simplest possible attention module. This one works with already-computed attention
|
|
weights, e.g. as computed by RelPositionMultiheadAttentionWeights.
|
|
|
|
Args:
|
|
embed_dim: the input and output embedding dimension
|
|
num_heads: the number of attention heads
|
|
value_head_dim: the value dimension per head
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
embed_dim: int,
|
|
num_heads: int,
|
|
value_head_dim: int,
|
|
) -> None:
|
|
super().__init__()
|
|
self.in_proj = nn.Linear(embed_dim, num_heads * value_head_dim, bias=True)
|
|
|
|
self.out_proj = ScaledLinear(
|
|
num_heads * value_head_dim, embed_dim, bias=True, initial_scale=0.05
|
|
)
|
|
|
|
self.whiten = Whiten(
|
|
num_groups=1,
|
|
whitening_limit=_whitening_schedule(7.5, ratio=3.0),
|
|
prob=(0.025, 0.25),
|
|
grad_scale=0.01,
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
x: Tensor,
|
|
attn_weights: Tensor,
|
|
) -> Tensor:
|
|
"""
|
|
Args:
|
|
x: input tensor, of shape (seq_len, batch_size, embed_dim)
|
|
attn_weights: a tensor of shape (num_heads, batch_size, seq_len, seq_len),
|
|
with seq_len being interpreted as (tgt_seq_len, src_seq_len). Expect
|
|
attn_weights.sum(dim=-1) == 1.
|
|
Returns:
|
|
a tensor with the same shape as x.
|
|
"""
|
|
(seq_len, batch_size, embed_dim) = x.shape
|
|
num_heads = attn_weights.shape[0]
|
|
assert attn_weights.shape == (num_heads, batch_size, seq_len, seq_len)
|
|
|
|
x = self.in_proj(x) # (seq_len, batch_size, num_heads * value_head_dim)
|
|
x = x.reshape(seq_len, batch_size, num_heads, -1).permute(2, 1, 0, 3)
|
|
# now x: (num_heads, batch_size, seq_len, value_head_dim)
|
|
value_head_dim = x.shape[-1]
|
|
|
|
# todo: see whether there is benefit in overriding matmul
|
|
x = torch.matmul(attn_weights, x)
|
|
# v: (num_heads, batch_size, seq_len, value_head_dim)
|
|
|
|
x = (
|
|
x.permute(2, 1, 0, 3)
|
|
.contiguous()
|
|
.view(seq_len, batch_size, num_heads * value_head_dim)
|
|
)
|
|
|
|
# returned value is of shape (seq_len, batch_size, embed_dim), like the input.
|
|
x = self.out_proj(x)
|
|
x = self.whiten(x)
|
|
|
|
return x
|
|
|
|
def streaming_forward(
|
|
self,
|
|
x: Tensor,
|
|
attn_weights: Tensor,
|
|
cached_val: Tensor,
|
|
left_context_len: int,
|
|
) -> Tuple[Tensor, Tensor]:
|
|
"""
|
|
Args:
|
|
x: input tensor, of shape (seq_len, batch_size, embed_dim)
|
|
attn_weights: a tensor of shape (num_heads, batch_size, seq_len, seq_len),
|
|
with seq_len being interpreted as (tgt_seq_len, src_seq_len). Expect
|
|
attn_weights.sum(dim=-1) == 1.
|
|
cached_val: cached attention value tensor of left context,
|
|
of shape (left_context_len, batch_size, value_dim)
|
|
left_context_len: number of left context frames.
|
|
|
|
Returns:
|
|
- attention weighted output, a tensor with the same shape as x.
|
|
- updated cached attention value tensor of left context.
|
|
"""
|
|
(seq_len, batch_size, embed_dim) = x.shape
|
|
num_heads = attn_weights.shape[0]
|
|
seq_len2 = seq_len + left_context_len
|
|
assert attn_weights.shape == (num_heads, batch_size, seq_len, seq_len2)
|
|
|
|
x = self.in_proj(x) # (seq_len, batch_size, num_heads * value_head_dim)
|
|
|
|
# Pad cached left contexts
|
|
assert cached_val.shape[0] == left_context_len, (
|
|
cached_val.shape[0],
|
|
left_context_len,
|
|
)
|
|
x = torch.cat([cached_val, x], dim=0)
|
|
# Update cached left contexts
|
|
cached_val = x[-left_context_len:, ...]
|
|
|
|
x = x.reshape(seq_len2, batch_size, num_heads, -1).permute(2, 1, 0, 3)
|
|
# now x: (num_heads, batch_size, seq_len, value_head_dim)
|
|
value_head_dim = x.shape[-1]
|
|
|
|
# todo: see whether there is benefit in overriding matmul
|
|
x = torch.matmul(attn_weights, x)
|
|
# v: (num_heads, batch_size, seq_len, value_head_dim)
|
|
|
|
x = (
|
|
x.permute(2, 1, 0, 3)
|
|
.contiguous()
|
|
.view(seq_len, batch_size, num_heads * value_head_dim)
|
|
)
|
|
|
|
# returned value is of shape (seq_len, batch_size, embed_dim), like the input.
|
|
x = self.out_proj(x)
|
|
|
|
return x, cached_val
|
|
|
|
|
|
class FeedforwardModule(nn.Module):
|
|
"""Feedforward module in Zipformer2 model."""
|
|
|
|
def __init__(self, embed_dim: int, feedforward_dim: int, dropout: FloatLike):
|
|
super(FeedforwardModule, self).__init__()
|
|
self.in_proj = nn.Linear(embed_dim, feedforward_dim)
|
|
|
|
self.hidden_balancer = Balancer(
|
|
feedforward_dim,
|
|
channel_dim=-1,
|
|
min_positive=0.3,
|
|
max_positive=1.0,
|
|
min_abs=0.75,
|
|
max_abs=5.0,
|
|
)
|
|
|
|
# shared_dim=0 means we share the dropout mask along the time axis
|
|
self.out_proj = ActivationDropoutAndLinear(
|
|
feedforward_dim,
|
|
embed_dim,
|
|
activation="SwooshL",
|
|
dropout_p=dropout,
|
|
dropout_shared_dim=0,
|
|
bias=True,
|
|
initial_scale=0.1,
|
|
)
|
|
|
|
self.out_whiten = Whiten(
|
|
num_groups=1,
|
|
whitening_limit=_whitening_schedule(7.5),
|
|
prob=(0.025, 0.25),
|
|
grad_scale=0.01,
|
|
)
|
|
|
|
def forward(self, x: Tensor):
|
|
x = self.in_proj(x)
|
|
x = self.hidden_balancer(x)
|
|
# out_proj contains SwooshL activation, then dropout, then linear.
|
|
x = self.out_proj(x)
|
|
x = self.out_whiten(x)
|
|
return x
|
|
|
|
|
|
class NonlinAttention(nn.Module):
|
|
"""This is like the ConvolutionModule, but refactored so that we use multiplication by attention weights (borrowed
|
|
from the attention module) in place of actual convolution. We also took out the second nonlinearity, the
|
|
one after the attention mechanism.
|
|
|
|
Args:
|
|
channels (int): The number of channels of conv layers.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
channels: int,
|
|
hidden_channels: int,
|
|
) -> None:
|
|
super().__init__()
|
|
|
|
self.hidden_channels = hidden_channels
|
|
|
|
self.in_proj = nn.Linear(channels, hidden_channels * 3, bias=True)
|
|
|
|
# balancer that goes before the sigmoid. Have quite a large min_abs value, at 2.0,
|
|
# because we noticed that well-trained instances of this module have abs-value before the sigmoid
|
|
# starting from about 3, and poorly-trained instances of the module have smaller abs values
|
|
# before the sigmoid.
|
|
self.balancer = Balancer(
|
|
hidden_channels,
|
|
channel_dim=-1,
|
|
min_positive=ScheduledFloat((0.0, 0.25), (20000.0, 0.05)),
|
|
max_positive=ScheduledFloat((0.0, 0.75), (20000.0, 0.95)),
|
|
min_abs=0.5,
|
|
max_abs=5.0,
|
|
)
|
|
self.tanh = nn.Tanh()
|
|
|
|
self.identity1 = Identity() # for diagnostics.
|
|
self.identity2 = Identity() # for diagnostics.
|
|
self.identity3 = Identity() # for diagnostics.
|
|
|
|
self.out_proj = ScaledLinear(
|
|
hidden_channels, channels, bias=True, initial_scale=0.05
|
|
)
|
|
|
|
self.whiten1 = Whiten(
|
|
num_groups=1,
|
|
whitening_limit=_whitening_schedule(5.0),
|
|
prob=(0.025, 0.25),
|
|
grad_scale=0.01,
|
|
)
|
|
|
|
self.whiten2 = Whiten(
|
|
num_groups=1,
|
|
whitening_limit=_whitening_schedule(5.0, ratio=3.0),
|
|
prob=(0.025, 0.25),
|
|
grad_scale=0.01,
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
x: Tensor,
|
|
attn_weights: Tensor,
|
|
) -> Tensor:
|
|
""".
|
|
Args:
|
|
x: a Tensor of shape (seq_len, batch_size, num_channels)
|
|
attn_weights: a Tensor of shape (num_heads, batch_size, seq_len, seq_len)
|
|
Returns:
|
|
a Tensor with the same shape as x
|
|
"""
|
|
x = self.in_proj(x)
|
|
|
|
(seq_len, batch_size, _) = x.shape
|
|
hidden_channels = self.hidden_channels
|
|
|
|
s, x, y = x.chunk(3, dim=2)
|
|
|
|
# s will go through tanh.
|
|
|
|
s = self.balancer(s)
|
|
s = self.tanh(s)
|
|
|
|
s = s.unsqueeze(-1).reshape(seq_len, batch_size, hidden_channels)
|
|
x = self.whiten1(x)
|
|
x = x * s
|
|
x = self.identity1(x) # diagnostics only, it's the identity.
|
|
|
|
(seq_len, batch_size, embed_dim) = x.shape
|
|
num_heads = attn_weights.shape[0]
|
|
assert attn_weights.shape == (num_heads, batch_size, seq_len, seq_len)
|
|
|
|
x = x.reshape(seq_len, batch_size, num_heads, -1).permute(2, 1, 0, 3)
|
|
# now x: (num_heads, batch_size, seq_len, head_dim)
|
|
x = torch.matmul(attn_weights, x)
|
|
# now x: (num_heads, batch_size, seq_len, head_dim)
|
|
x = x.permute(2, 1, 0, 3).reshape(seq_len, batch_size, -1)
|
|
|
|
y = self.identity2(y)
|
|
x = x * y
|
|
x = self.identity3(x)
|
|
|
|
x = self.out_proj(x)
|
|
x = self.whiten2(x)
|
|
return x
|
|
|
|
def streaming_forward(
|
|
self,
|
|
x: Tensor,
|
|
attn_weights: Tensor,
|
|
cached_x: Tensor,
|
|
left_context_len: int,
|
|
) -> Tuple[Tensor, Tensor]:
|
|
""".
|
|
Args:
|
|
x: a Tensor of shape (seq_len, batch_size, num_channels)
|
|
attn_weights: a Tensor of shape (num_heads, batch_size, seq_len, seq_len)
|
|
cached_x: left context, a Tensor of shape
|
|
(num_heads, batch_size, left_context_len, head_dim)
|
|
left_context_len: number of left context frames.
|
|
Returns:
|
|
- a Tensor with the same shape as x
|
|
- updated left context with same shape as cached_x
|
|
"""
|
|
x = self.in_proj(x)
|
|
|
|
(seq_len, batch_size, _) = x.shape
|
|
hidden_channels = self.hidden_channels
|
|
|
|
s, x, y = x.chunk(3, dim=2)
|
|
|
|
# s will go through tanh.
|
|
s = self.tanh(s)
|
|
|
|
s = s.unsqueeze(-1).reshape(seq_len, batch_size, hidden_channels)
|
|
x = x * s
|
|
|
|
(seq_len, batch_size, embed_dim) = x.shape
|
|
num_heads = attn_weights.shape[0]
|
|
assert attn_weights.shape == (
|
|
num_heads,
|
|
batch_size,
|
|
seq_len,
|
|
left_context_len + seq_len,
|
|
)
|
|
|
|
x = x.reshape(seq_len, batch_size, num_heads, -1).permute(2, 1, 0, 3)
|
|
# now x: (num_heads, batch_size, seq_len, head_dim)
|
|
|
|
# Pad cached tensor
|
|
assert cached_x.shape[2] == left_context_len, (
|
|
cached_x.shape[2],
|
|
left_context_len,
|
|
)
|
|
x_pad = torch.cat([cached_x, x], dim=2)
|
|
# Update cached tensor
|
|
cached_x = x_pad[:, :, -left_context_len:, :]
|
|
|
|
x = torch.matmul(attn_weights, x_pad)
|
|
# now x: (num_heads, batch_size, seq_len, head_dim)
|
|
x = x.permute(2, 1, 0, 3).reshape(seq_len, batch_size, -1)
|
|
|
|
x = x * y
|
|
|
|
x = self.out_proj(x)
|
|
return x, cached_x
|
|
|
|
|
|
class ConvolutionModule(nn.Module):
|
|
"""ConvolutionModule in Zipformer2 model.
|
|
Modified from https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/zipformer/convolution.py
|
|
|
|
Args:
|
|
channels (int): The number of channels of conv layers.
|
|
kernel_size (int): Kernerl size of conv layers.
|
|
bias (bool): Whether to use bias in conv layers (default=True).
|
|
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
channels: int,
|
|
kernel_size: int,
|
|
causal: bool,
|
|
) -> None:
|
|
"""Construct a ConvolutionModule object."""
|
|
super(ConvolutionModule, self).__init__()
|
|
# kernerl_size should be a odd number for 'SAME' padding
|
|
assert (kernel_size - 1) % 2 == 0
|
|
|
|
bottleneck_dim = channels
|
|
self.causal = causal
|
|
|
|
self.in_proj = nn.Linear(
|
|
channels,
|
|
2 * bottleneck_dim,
|
|
)
|
|
# the gradients on in_proj are a little noisy, likely to do with the
|
|
# sigmoid in glu.
|
|
|
|
# after in_proj we put x through a gated linear unit (nn.functional.glu).
|
|
# For most layers the normal rms value of channels of x seems to be in the range 1 to 4,
|
|
# but sometimes, for some reason, for layer 0 the rms ends up being very large,
|
|
# between 50 and 100 for different channels. This will cause very peaky and
|
|
# sparse derivatives for the sigmoid gating function, which will tend to make
|
|
# the loss function not learn effectively. (for most layers the average absolute values
|
|
# are in the range 0.5..9.0, and the average p(x>0), i.e. positive proportion,
|
|
# at the output of pointwise_conv1.output is around 0.35 to 0.45 for different
|
|
# layers, which likely breaks down as 0.5 for the "linear" half and
|
|
# 0.2 to 0.3 for the part that goes into the sigmoid. The idea is that if we
|
|
# constrain the rms values to a reasonable range via a constraint of max_abs=10.0,
|
|
# it will be in a better position to start learning something, i.e. to latch onto
|
|
# the correct range.
|
|
self.balancer1 = Balancer(
|
|
bottleneck_dim,
|
|
channel_dim=-1,
|
|
min_positive=ScheduledFloat((0.0, 0.05), (8000.0, 0.025)),
|
|
max_positive=1.0,
|
|
min_abs=1.5,
|
|
max_abs=ScheduledFloat((0.0, 5.0), (8000.0, 10.0), default=1.0),
|
|
)
|
|
|
|
self.activation1 = Identity() # for diagnostics
|
|
|
|
self.sigmoid = nn.Sigmoid()
|
|
|
|
self.activation2 = Identity() # for diagnostics
|
|
|
|
assert kernel_size % 2 == 1
|
|
|
|
self.depthwise_conv = (
|
|
ChunkCausalDepthwiseConv1d(channels=bottleneck_dim, kernel_size=kernel_size)
|
|
if causal
|
|
else nn.Conv1d(
|
|
in_channels=bottleneck_dim,
|
|
out_channels=bottleneck_dim,
|
|
groups=bottleneck_dim,
|
|
kernel_size=kernel_size,
|
|
padding=kernel_size // 2,
|
|
)
|
|
)
|
|
|
|
self.balancer2 = Balancer(
|
|
bottleneck_dim,
|
|
channel_dim=1,
|
|
min_positive=ScheduledFloat((0.0, 0.1), (8000.0, 0.05)),
|
|
max_positive=1.0,
|
|
min_abs=ScheduledFloat((0.0, 0.2), (20000.0, 0.5)),
|
|
max_abs=10.0,
|
|
)
|
|
|
|
self.whiten = Whiten(
|
|
num_groups=1,
|
|
whitening_limit=_whitening_schedule(7.5),
|
|
prob=(0.025, 0.25),
|
|
grad_scale=0.01,
|
|
)
|
|
|
|
self.out_proj = ActivationDropoutAndLinear(
|
|
bottleneck_dim,
|
|
channels,
|
|
activation="SwooshR",
|
|
dropout_p=0.0,
|
|
initial_scale=0.05,
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
x: Tensor,
|
|
src_key_padding_mask: Optional[Tensor] = None,
|
|
chunk_size: int = -1,
|
|
) -> Tensor:
|
|
"""Compute convolution module.
|
|
|
|
Args:
|
|
x: Input tensor (#time, batch, channels).
|
|
src_key_padding_mask: the mask for the src keys per batch (optional):
|
|
(batch, #time), contains True in masked positions.
|
|
|
|
Returns:
|
|
Tensor: Output tensor (#time, batch, channels).
|
|
|
|
"""
|
|
|
|
x = self.in_proj(x) # (time, batch, 2*channels)
|
|
|
|
x, s = x.chunk(2, dim=2)
|
|
s = self.balancer1(s)
|
|
s = self.sigmoid(s)
|
|
x = self.activation1(x) # identity.
|
|
x = x * s
|
|
x = self.activation2(x) # identity
|
|
|
|
# (time, batch, channels)
|
|
|
|
# exchange the temporal dimension and the feature dimension
|
|
x = x.permute(1, 2, 0) # (#batch, channels, time).
|
|
|
|
if src_key_padding_mask is not None:
|
|
x = x.masked_fill(src_key_padding_mask.unsqueeze(1).expand_as(x), 0.0)
|
|
|
|
if (
|
|
not torch.jit.is_scripting()
|
|
and not torch.jit.is_tracing()
|
|
and chunk_size >= 0
|
|
):
|
|
# Not support exporting a model for simulated streaming decoding
|
|
assert (
|
|
self.causal
|
|
), "Must initialize model with causal=True if you use chunk_size"
|
|
x = self.depthwise_conv(x, chunk_size=chunk_size)
|
|
else:
|
|
x = self.depthwise_conv(x)
|
|
|
|
x = self.balancer2(x)
|
|
x = x.permute(2, 0, 1) # (time, batch, channels)
|
|
|
|
x = self.whiten(x) # (time, batch, channels)
|
|
x = self.out_proj(x) # (time, batch, channels)
|
|
|
|
return x
|
|
|
|
def streaming_forward(
|
|
self,
|
|
x: Tensor,
|
|
cache: Tensor,
|
|
src_key_padding_mask: Tensor,
|
|
) -> Tuple[Tensor, Tensor]:
|
|
"""Compute convolution module in streaming forward mode.
|
|
|
|
Args:
|
|
x: Input tensor (#time, batch, channels).
|
|
cache: cached left context for depthwise_conv of shape
|
|
(#batch, channels, left_pad)
|
|
src_key_padding_mask: the mask for the src keys per batch (optional):
|
|
(batch, #time), contains True in masked positions.
|
|
|
|
Returns:
|
|
- Output tensor (#time, batch, channels).
|
|
- Updated cache (#batch, channels, left_pad)
|
|
"""
|
|
|
|
x = self.in_proj(x) # (time, batch, 2*channels)
|
|
|
|
x, s = x.chunk(2, dim=2)
|
|
s = self.sigmoid(s)
|
|
x = x * s
|
|
# (time, batch, channels)
|
|
|
|
# exchange the temporal dimension and the feature dimension
|
|
x = x.permute(1, 2, 0) # (#batch, channels, time).
|
|
|
|
if src_key_padding_mask is not None:
|
|
x = x.masked_fill(src_key_padding_mask.unsqueeze(1).expand_as(x), 0.0)
|
|
|
|
x, cache = self.depthwise_conv.streaming_forward(x, cache=cache)
|
|
|
|
x = x.permute(2, 0, 1) # (time, batch, channels)
|
|
|
|
x = self.out_proj(x) # (time, batch, channels)
|
|
|
|
return x, cache
|
|
|
|
|
|
class ScalarMultiply(nn.Module):
|
|
def __init__(self, scale: float):
|
|
super().__init__()
|
|
self.scale = scale
|
|
|
|
def forward(self, x):
|
|
return x * self.scale
|
|
|
|
|
|
def _test_zipformer_main(causal: bool = False):
|
|
batch_size = 5
|
|
seq_len = 20
|
|
# Just make sure the forward pass runs.
|
|
|
|
c = Zipformer2(
|
|
encoder_dim=(64, 96),
|
|
encoder_unmasked_dim=(48, 64),
|
|
num_heads=(4, 4),
|
|
causal=causal,
|
|
chunk_size=(4,) if causal else (-1,),
|
|
left_context_frames=(64,),
|
|
)
|
|
batch_size = 5
|
|
seq_len = 20
|
|
# Just make sure the forward pass runs.
|
|
f = c(
|
|
torch.randn(seq_len, batch_size, 64),
|
|
torch.full((batch_size,), seq_len, dtype=torch.int64),
|
|
)
|
|
f[0].sum().backward()
|
|
c.eval()
|
|
f = c(
|
|
torch.randn(seq_len, batch_size, 64),
|
|
torch.full((batch_size,), seq_len, dtype=torch.int64),
|
|
)
|
|
f # to remove flake8 warnings
|
|
|
|
|
|
if __name__ == "__main__":
|
|
logging.getLogger().setLevel(logging.INFO)
|
|
torch.set_num_threads(1)
|
|
torch.set_num_interop_threads(1)
|
|
_test_zipformer_main(False)
|
|
_test_zipformer_main(True)
|