mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
105 lines
3.3 KiB
Python
105 lines
3.3 KiB
Python
# Copyright 2022-2023 Xiaomi Corp. (authors: Fangjun Kuang, Zengwei Yao)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
"""
|
|
This file replaces various modules in a model.
|
|
Specifically, ActivationBalancer is replaced with an identity operator;
|
|
Whiten is also replaced with an identity operator;
|
|
BasicNorm is replaced by a module with `exp` removed.
|
|
"""
|
|
|
|
import copy
|
|
from typing import List, Tuple
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
from scaling import (
|
|
Balancer,
|
|
Dropout3,
|
|
ScaleGrad,
|
|
SwooshL,
|
|
SwooshLOnnx,
|
|
SwooshR,
|
|
SwooshROnnx,
|
|
Whiten,
|
|
)
|
|
from zipformer import CompactRelPositionalEncoding
|
|
|
|
|
|
# Copied from https://pytorch.org/docs/1.9.0/_modules/torch/nn/modules/module.html#Module.get_submodule # noqa
|
|
# get_submodule was added to nn.Module at v1.9.0
|
|
def get_submodule(model, target):
|
|
if target == "":
|
|
return model
|
|
atoms: List[str] = target.split(".")
|
|
mod: torch.nn.Module = model
|
|
for item in atoms:
|
|
if not hasattr(mod, item):
|
|
raise AttributeError(
|
|
mod._get_name() + " has no " "attribute `" + item + "`"
|
|
)
|
|
mod = getattr(mod, item)
|
|
if not isinstance(mod, torch.nn.Module):
|
|
raise AttributeError("`" + item + "` is not " "an nn.Module")
|
|
return mod
|
|
|
|
|
|
def convert_scaled_to_non_scaled(
|
|
model: nn.Module,
|
|
inplace: bool = False,
|
|
is_pnnx: bool = False,
|
|
is_onnx: bool = False,
|
|
):
|
|
"""
|
|
Args:
|
|
model:
|
|
The model to be converted.
|
|
inplace:
|
|
If True, the input model is modified inplace.
|
|
If False, the input model is copied and we modify the copied version.
|
|
is_pnnx:
|
|
True if we are going to export the model for PNNX.
|
|
is_onnx:
|
|
True if we are going to export the model for ONNX.
|
|
Return:
|
|
Return a model without scaled layers.
|
|
"""
|
|
if not inplace:
|
|
model = copy.deepcopy(model)
|
|
|
|
d = {}
|
|
for name, m in model.named_modules():
|
|
if isinstance(m, (Balancer, Dropout3, ScaleGrad, Whiten)):
|
|
d[name] = nn.Identity()
|
|
elif is_onnx and isinstance(m, SwooshR):
|
|
d[name] = SwooshROnnx()
|
|
elif is_onnx and isinstance(m, SwooshL):
|
|
d[name] = SwooshLOnnx()
|
|
elif is_onnx and isinstance(m, CompactRelPositionalEncoding):
|
|
# We want to recreate the positional encoding vector when
|
|
# the input changes, so we have to use torch.jit.script()
|
|
# to replace torch.jit.trace()
|
|
d[name] = torch.jit.script(m)
|
|
|
|
for k, v in d.items():
|
|
if "." in k:
|
|
parent, child = k.rsplit(".", maxsplit=1)
|
|
setattr(get_submodule(model, parent), child, v)
|
|
else:
|
|
setattr(model, k, v)
|
|
|
|
return model
|