2022-11-17 14:18:05 -05:00

322 lines
9.2 KiB
Python
Executable File

#!/usr/bin/env python3
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Usage:
./transducer_stateless/compute_ali.py \
--exp-dir ./transducer_stateless/exp \
--bpe-model ./data/lang_bpe_500/bpe.model \
--epoch 20 \
--avg 10 \
--max-duration 300 \
--dataset train-clean-100 \
--out-dir data/ali
"""
import argparse
import logging
from pathlib import Path
from typing import List
import numpy as np
import sentencepiece as spm
import torch
from alignment import force_alignment
from asr_datamodule import LibriSpeechAsrDataModule
from lhotse import CutSet
from lhotse.features.io import FeaturesWriter, NumpyHdf5Writer
from train import get_params, get_transducer_model
from icefall.checkpoint import average_checkpoints, load_checkpoint
from icefall.utils import AttributeDict, setup_logger
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--epoch",
type=int,
default=34,
help="It specifies the checkpoint to use for decoding."
"Note: Epoch counts from 0.",
)
parser.add_argument(
"--avg",
type=int,
default=20,
help="Number of checkpoints to average. Automatically select "
"consecutive checkpoints before the checkpoint specified by "
"'--epoch'. ",
)
parser.add_argument(
"--bpe-model",
type=str,
default="data/lang_bpe_500/bpe.model",
help="Path to the BPE model",
)
parser.add_argument(
"--exp-dir",
type=str,
default="transducer_stateless/exp",
help="The experiment dir",
)
parser.add_argument(
"--out-dir",
type=str,
required=True,
help="""Output directory.
It contains 2 generated files:
- token_ali_xxx.h5
- cuts_xxx.json.gz
where xxx is the value of `--dataset`. For instance, if
`--dataset` is `train-clean-100`, it will contain 2 files:
- `token_ali_train-clean-100.h5`
- `cuts_train-clean-100.json.gz`
""",
)
parser.add_argument(
"--dataset",
type=str,
required=True,
help="""The name of the dataset to compute alignments for.
Possible values are:
- test-clean.
- test-other
- train-clean-100
- train-clean-360
- train-other-500
- dev-clean
- dev-other
""",
)
parser.add_argument(
"--beam-size",
type=int,
default=4,
)
parser.add_argument(
"--context-size",
type=int,
default=2,
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
)
return parser
def compute_alignments(
model: torch.nn.Module,
dl: torch.utils.data,
ali_writer: FeaturesWriter,
params: AttributeDict,
sp: spm.SentencePieceProcessor,
):
try:
num_batches = len(dl)
except TypeError:
num_batches = "?"
num_cuts = 0
device = model.device
cuts = []
for batch_idx, batch in enumerate(dl):
feature = batch["inputs"]
# at entry, feature is [N, T, C]
assert feature.ndim == 3
feature = feature.to(device)
supervisions = batch["supervisions"]
cut_list = supervisions["cut"]
for cut in cut_list:
assert len(cut.supervisions) == 1, f"{len(cut.supervisions)}"
feature_lens = supervisions["num_frames"].to(device)
encoder_out, encoder_out_lens = model.encoder(x=feature, x_lens=feature_lens)
batch_size = encoder_out.size(0)
texts = supervisions["text"]
ys_list: List[List[int]] = sp.encode(texts, out_type=int)
ali_list = []
for i in range(batch_size):
# fmt: off
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
# fmt: on
ali = force_alignment(
model=model,
encoder_out=encoder_out_i,
ys=ys_list[i],
beam_size=params.beam_size,
)
ali_list.append(ali)
assert len(ali_list) == len(cut_list)
for cut, ali in zip(cut_list, ali_list):
cut.token_alignment = ali_writer.store_array(
key=cut.id,
value=np.asarray(ali, dtype=np.int32),
# frame shift is 0.01s, subsampling_factor is 4
frame_shift=0.04,
temporal_dim=0,
start=0,
)
cuts += cut_list
num_cuts += len(cut_list)
if batch_idx % 2 == 0:
batch_str = f"{batch_idx}/{num_batches}"
logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
return CutSet.from_cuts(cuts)
@torch.no_grad()
def main():
parser = get_parser()
LibriSpeechAsrDataModule.add_arguments(parser)
args = parser.parse_args()
args.enable_spec_aug = False
args.enable_musan = False
args.return_cuts = True
args.concatenate_cuts = False
params = get_params()
params.update(vars(args))
setup_logger(f"{params.exp_dir}/log-ali")
sp = spm.SentencePieceProcessor()
sp.load(params.bpe_model)
# <blk> is defined in local/train_bpe_model.py
params.blank_id = sp.piece_to_id("<blk>")
params.vocab_size = sp.get_piece_size()
logging.info(f"Computing alignments for {params.dataset} - started")
logging.info(params)
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
logging.info(f"Device: {device}")
out_dir = Path(params.out_dir)
out_dir.mkdir(exist_ok=True)
out_ali_filename = out_dir / f"token_ali_{params.dataset}.h5"
out_manifest_filename = out_dir / f"cuts_{params.dataset}.json.gz"
done_file = out_dir / f".{params.dataset}.done"
if done_file.is_file():
logging.info(f"{done_file} exists - skipping")
exit()
logging.info("About to create model")
model = get_transducer_model(params)
if params.avg == 1:
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
else:
start = params.epoch - params.avg + 1
filenames = []
for i in range(start, params.epoch + 1):
if start >= 0:
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(
average_checkpoints(filenames, device=device), strict=False
)
model.to(device)
model.eval()
model.device = device
num_param = sum([p.numel() for p in model.parameters()])
logging.info(f"Number of model parameters: {num_param}")
librispeech = LibriSpeechAsrDataModule(args)
if params.dataset == "test-clean":
test_clean_cuts = librispeech.test_clean_cuts()
dl = librispeech.test_dataloaders(test_clean_cuts)
elif params.dataset == "test-other":
test_other_cuts = librispeech.test_other_cuts()
dl = librispeech.test_dataloaders(test_other_cuts)
elif params.dataset == "train-clean-100":
train_clean_100_cuts = librispeech.train_clean_100_cuts()
dl = librispeech.train_dataloaders(train_clean_100_cuts)
elif params.dataset == "train-clean-360":
train_clean_360_cuts = librispeech.train_clean_360_cuts()
dl = librispeech.train_dataloaders(train_clean_360_cuts)
elif params.dataset == "train-other-500":
train_other_500_cuts = librispeech.train_other_500_cuts()
dl = librispeech.train_dataloaders(train_other_500_cuts)
elif params.dataset == "dev-clean":
dev_clean_cuts = librispeech.dev_clean_cuts()
dl = librispeech.valid_dataloaders(dev_clean_cuts)
else:
assert params.dataset == "dev-other", f"{params.dataset}"
dev_other_cuts = librispeech.dev_other_cuts()
dl = librispeech.valid_dataloaders(dev_other_cuts)
logging.info(f"Processing {params.dataset}")
with NumpyHdf5Writer(out_ali_filename) as ali_writer:
cut_set = compute_alignments(
model=model,
dl=dl,
ali_writer=ali_writer,
params=params,
sp=sp,
)
cut_set.to_file(out_manifest_filename)
logging.info(
f"For dataset {params.dataset}, its framewise token alignments are "
f"saved to {out_ali_filename} and the cut manifest "
f"file is {out_manifest_filename}. Number of cuts: {len(cut_set)}"
)
done_file.touch()
if __name__ == "__main__":
main()