mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
322 lines
9.2 KiB
Python
Executable File
322 lines
9.2 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
"""
|
|
Usage:
|
|
./transducer_stateless/compute_ali.py \
|
|
--exp-dir ./transducer_stateless/exp \
|
|
--bpe-model ./data/lang_bpe_500/bpe.model \
|
|
--epoch 20 \
|
|
--avg 10 \
|
|
--max-duration 300 \
|
|
--dataset train-clean-100 \
|
|
--out-dir data/ali
|
|
"""
|
|
|
|
import argparse
|
|
import logging
|
|
from pathlib import Path
|
|
from typing import List
|
|
|
|
import numpy as np
|
|
import sentencepiece as spm
|
|
import torch
|
|
from alignment import force_alignment
|
|
from asr_datamodule import LibriSpeechAsrDataModule
|
|
from lhotse import CutSet
|
|
from lhotse.features.io import FeaturesWriter, NumpyHdf5Writer
|
|
from train import get_params, get_transducer_model
|
|
|
|
from icefall.checkpoint import average_checkpoints, load_checkpoint
|
|
from icefall.utils import AttributeDict, setup_logger
|
|
|
|
|
|
def get_parser():
|
|
parser = argparse.ArgumentParser(
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--epoch",
|
|
type=int,
|
|
default=34,
|
|
help="It specifies the checkpoint to use for decoding."
|
|
"Note: Epoch counts from 0.",
|
|
)
|
|
parser.add_argument(
|
|
"--avg",
|
|
type=int,
|
|
default=20,
|
|
help="Number of checkpoints to average. Automatically select "
|
|
"consecutive checkpoints before the checkpoint specified by "
|
|
"'--epoch'. ",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--bpe-model",
|
|
type=str,
|
|
default="data/lang_bpe_500/bpe.model",
|
|
help="Path to the BPE model",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--exp-dir",
|
|
type=str,
|
|
default="transducer_stateless/exp",
|
|
help="The experiment dir",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--out-dir",
|
|
type=str,
|
|
required=True,
|
|
help="""Output directory.
|
|
It contains 2 generated files:
|
|
|
|
- token_ali_xxx.h5
|
|
- cuts_xxx.json.gz
|
|
|
|
where xxx is the value of `--dataset`. For instance, if
|
|
`--dataset` is `train-clean-100`, it will contain 2 files:
|
|
|
|
- `token_ali_train-clean-100.h5`
|
|
- `cuts_train-clean-100.json.gz`
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--dataset",
|
|
type=str,
|
|
required=True,
|
|
help="""The name of the dataset to compute alignments for.
|
|
Possible values are:
|
|
- test-clean.
|
|
- test-other
|
|
- train-clean-100
|
|
- train-clean-360
|
|
- train-other-500
|
|
- dev-clean
|
|
- dev-other
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--beam-size",
|
|
type=int,
|
|
default=4,
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--context-size",
|
|
type=int,
|
|
default=2,
|
|
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
|
)
|
|
|
|
return parser
|
|
|
|
|
|
def compute_alignments(
|
|
model: torch.nn.Module,
|
|
dl: torch.utils.data,
|
|
ali_writer: FeaturesWriter,
|
|
params: AttributeDict,
|
|
sp: spm.SentencePieceProcessor,
|
|
):
|
|
try:
|
|
num_batches = len(dl)
|
|
except TypeError:
|
|
num_batches = "?"
|
|
num_cuts = 0
|
|
|
|
device = model.device
|
|
cuts = []
|
|
|
|
for batch_idx, batch in enumerate(dl):
|
|
feature = batch["inputs"]
|
|
|
|
# at entry, feature is [N, T, C]
|
|
assert feature.ndim == 3
|
|
feature = feature.to(device)
|
|
|
|
supervisions = batch["supervisions"]
|
|
|
|
cut_list = supervisions["cut"]
|
|
for cut in cut_list:
|
|
assert len(cut.supervisions) == 1, f"{len(cut.supervisions)}"
|
|
|
|
feature_lens = supervisions["num_frames"].to(device)
|
|
|
|
encoder_out, encoder_out_lens = model.encoder(x=feature, x_lens=feature_lens)
|
|
|
|
batch_size = encoder_out.size(0)
|
|
|
|
texts = supervisions["text"]
|
|
|
|
ys_list: List[List[int]] = sp.encode(texts, out_type=int)
|
|
|
|
ali_list = []
|
|
for i in range(batch_size):
|
|
# fmt: off
|
|
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
|
|
# fmt: on
|
|
|
|
ali = force_alignment(
|
|
model=model,
|
|
encoder_out=encoder_out_i,
|
|
ys=ys_list[i],
|
|
beam_size=params.beam_size,
|
|
)
|
|
ali_list.append(ali)
|
|
assert len(ali_list) == len(cut_list)
|
|
|
|
for cut, ali in zip(cut_list, ali_list):
|
|
cut.token_alignment = ali_writer.store_array(
|
|
key=cut.id,
|
|
value=np.asarray(ali, dtype=np.int32),
|
|
# frame shift is 0.01s, subsampling_factor is 4
|
|
frame_shift=0.04,
|
|
temporal_dim=0,
|
|
start=0,
|
|
)
|
|
|
|
cuts += cut_list
|
|
|
|
num_cuts += len(cut_list)
|
|
|
|
if batch_idx % 2 == 0:
|
|
batch_str = f"{batch_idx}/{num_batches}"
|
|
|
|
logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
|
|
|
|
return CutSet.from_cuts(cuts)
|
|
|
|
|
|
@torch.no_grad()
|
|
def main():
|
|
parser = get_parser()
|
|
LibriSpeechAsrDataModule.add_arguments(parser)
|
|
args = parser.parse_args()
|
|
|
|
args.enable_spec_aug = False
|
|
args.enable_musan = False
|
|
args.return_cuts = True
|
|
args.concatenate_cuts = False
|
|
|
|
params = get_params()
|
|
params.update(vars(args))
|
|
|
|
setup_logger(f"{params.exp_dir}/log-ali")
|
|
|
|
sp = spm.SentencePieceProcessor()
|
|
sp.load(params.bpe_model)
|
|
|
|
# <blk> is defined in local/train_bpe_model.py
|
|
params.blank_id = sp.piece_to_id("<blk>")
|
|
params.vocab_size = sp.get_piece_size()
|
|
|
|
logging.info(f"Computing alignments for {params.dataset} - started")
|
|
logging.info(params)
|
|
|
|
device = torch.device("cpu")
|
|
if torch.cuda.is_available():
|
|
device = torch.device("cuda", 0)
|
|
logging.info(f"Device: {device}")
|
|
|
|
out_dir = Path(params.out_dir)
|
|
out_dir.mkdir(exist_ok=True)
|
|
|
|
out_ali_filename = out_dir / f"token_ali_{params.dataset}.h5"
|
|
out_manifest_filename = out_dir / f"cuts_{params.dataset}.json.gz"
|
|
|
|
done_file = out_dir / f".{params.dataset}.done"
|
|
if done_file.is_file():
|
|
logging.info(f"{done_file} exists - skipping")
|
|
exit()
|
|
|
|
logging.info("About to create model")
|
|
model = get_transducer_model(params)
|
|
|
|
if params.avg == 1:
|
|
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
|
else:
|
|
start = params.epoch - params.avg + 1
|
|
filenames = []
|
|
for i in range(start, params.epoch + 1):
|
|
if start >= 0:
|
|
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
|
logging.info(f"averaging {filenames}")
|
|
model.to(device)
|
|
model.load_state_dict(
|
|
average_checkpoints(filenames, device=device), strict=False
|
|
)
|
|
|
|
model.to(device)
|
|
model.eval()
|
|
model.device = device
|
|
|
|
num_param = sum([p.numel() for p in model.parameters()])
|
|
logging.info(f"Number of model parameters: {num_param}")
|
|
|
|
librispeech = LibriSpeechAsrDataModule(args)
|
|
if params.dataset == "test-clean":
|
|
test_clean_cuts = librispeech.test_clean_cuts()
|
|
dl = librispeech.test_dataloaders(test_clean_cuts)
|
|
elif params.dataset == "test-other":
|
|
test_other_cuts = librispeech.test_other_cuts()
|
|
dl = librispeech.test_dataloaders(test_other_cuts)
|
|
elif params.dataset == "train-clean-100":
|
|
train_clean_100_cuts = librispeech.train_clean_100_cuts()
|
|
dl = librispeech.train_dataloaders(train_clean_100_cuts)
|
|
elif params.dataset == "train-clean-360":
|
|
train_clean_360_cuts = librispeech.train_clean_360_cuts()
|
|
dl = librispeech.train_dataloaders(train_clean_360_cuts)
|
|
elif params.dataset == "train-other-500":
|
|
train_other_500_cuts = librispeech.train_other_500_cuts()
|
|
dl = librispeech.train_dataloaders(train_other_500_cuts)
|
|
elif params.dataset == "dev-clean":
|
|
dev_clean_cuts = librispeech.dev_clean_cuts()
|
|
dl = librispeech.valid_dataloaders(dev_clean_cuts)
|
|
else:
|
|
assert params.dataset == "dev-other", f"{params.dataset}"
|
|
dev_other_cuts = librispeech.dev_other_cuts()
|
|
dl = librispeech.valid_dataloaders(dev_other_cuts)
|
|
|
|
logging.info(f"Processing {params.dataset}")
|
|
|
|
with NumpyHdf5Writer(out_ali_filename) as ali_writer:
|
|
cut_set = compute_alignments(
|
|
model=model,
|
|
dl=dl,
|
|
ali_writer=ali_writer,
|
|
params=params,
|
|
sp=sp,
|
|
)
|
|
|
|
cut_set.to_file(out_manifest_filename)
|
|
|
|
logging.info(
|
|
f"For dataset {params.dataset}, its framewise token alignments are "
|
|
f"saved to {out_ali_filename} and the cut manifest "
|
|
f"file is {out_manifest_filename}. Number of cuts: {len(cut_set)}"
|
|
)
|
|
done_file.touch()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|