mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
421 lines
12 KiB
Python
Executable File
421 lines
12 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
This script loads ONNX models and uses them to decode waves.
|
|
You can use the following command to get the exported models:
|
|
|
|
We use the pre-trained model from
|
|
https://huggingface.co/csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13
|
|
as an example to show how to use this file.
|
|
|
|
1. Download the pre-trained model
|
|
|
|
cd egs/librispeech/ASR
|
|
|
|
repo_url=https://huggingface.co/csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13
|
|
GIT_LFS_SKIP_SMUDGE=1 git clone $repo_url
|
|
repo=$(basename $repo_url)
|
|
|
|
pushd $repo
|
|
git lfs pull --include "data/lang_bpe_500/bpe.model"
|
|
git lfs pull --include "exp/pretrained-iter-1224000-avg-14.pt"
|
|
|
|
cd exp
|
|
ln -s pretrained-iter-1224000-avg-14.pt epoch-9999.pt
|
|
popd
|
|
|
|
2. Export the model to ONNX
|
|
|
|
./pruned_transducer_stateless3/export-onnx.py \
|
|
--bpe-model $repo/data/lang_bpe_500/bpe.model \
|
|
--epoch 9999 \
|
|
--avg 1 \
|
|
--exp-dir $repo/exp/
|
|
|
|
It will generate the following 3 files inside $repo/exp:
|
|
|
|
- encoder-epoch-9999-avg-1.onnx
|
|
- decoder-epoch-9999-avg-1.onnx
|
|
- joiner-epoch-9999-avg-1.onnx
|
|
|
|
3. Run this file
|
|
|
|
./pruned_transducer_stateless3/onnx_pretrained.py \
|
|
--encoder-model-filename $repo/exp/encoder-epoch-9999-avg-1.onnx \
|
|
--decoder-model-filename $repo/exp/decoder-epoch-9999-avg-1.onnx \
|
|
--joiner-model-filename $repo/exp/joiner-epoch-9999-avg-1.onnx \
|
|
--tokens $repo/data/lang_bpe_500/tokens.txt \
|
|
$repo/test_wavs/1089-134686-0001.wav \
|
|
$repo/test_wavs/1221-135766-0001.wav \
|
|
$repo/test_wavs/1221-135766-0002.wav
|
|
"""
|
|
|
|
import argparse
|
|
import logging
|
|
import math
|
|
from typing import List, Tuple
|
|
|
|
import k2
|
|
import kaldifeat
|
|
import onnxruntime as ort
|
|
import torch
|
|
import torchaudio
|
|
from torch.nn.utils.rnn import pad_sequence
|
|
|
|
|
|
def get_parser():
|
|
parser = argparse.ArgumentParser(
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--encoder-model-filename",
|
|
type=str,
|
|
required=True,
|
|
help="Path to the encoder onnx model. ",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--decoder-model-filename",
|
|
type=str,
|
|
required=True,
|
|
help="Path to the decoder onnx model. ",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--joiner-model-filename",
|
|
type=str,
|
|
required=True,
|
|
help="Path to the joiner onnx model. ",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--tokens",
|
|
type=str,
|
|
help="""Path to tokens.txt.""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"sound_files",
|
|
type=str,
|
|
nargs="+",
|
|
help="The input sound file(s) to transcribe. "
|
|
"Supported formats are those supported by torchaudio.load(). "
|
|
"For example, wav and flac are supported. "
|
|
"The sample rate has to be 16kHz.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--sample-rate",
|
|
type=int,
|
|
default=16000,
|
|
help="The sample rate of the input sound file",
|
|
)
|
|
|
|
return parser
|
|
|
|
|
|
class OnnxModel:
|
|
def __init__(
|
|
self,
|
|
encoder_model_filename: str,
|
|
decoder_model_filename: str,
|
|
joiner_model_filename: str,
|
|
):
|
|
session_opts = ort.SessionOptions()
|
|
session_opts.inter_op_num_threads = 1
|
|
session_opts.intra_op_num_threads = 4
|
|
|
|
self.session_opts = session_opts
|
|
|
|
self.init_encoder(encoder_model_filename)
|
|
self.init_decoder(decoder_model_filename)
|
|
self.init_joiner(joiner_model_filename)
|
|
|
|
def init_encoder(self, encoder_model_filename: str):
|
|
self.encoder = ort.InferenceSession(
|
|
encoder_model_filename,
|
|
sess_options=self.session_opts,
|
|
providers=["CPUExecutionProvider"],
|
|
)
|
|
|
|
def init_decoder(self, decoder_model_filename: str):
|
|
self.decoder = ort.InferenceSession(
|
|
decoder_model_filename,
|
|
sess_options=self.session_opts,
|
|
providers=["CPUExecutionProvider"],
|
|
)
|
|
|
|
decoder_meta = self.decoder.get_modelmeta().custom_metadata_map
|
|
self.context_size = int(decoder_meta["context_size"])
|
|
self.vocab_size = int(decoder_meta["vocab_size"])
|
|
|
|
logging.info(f"context_size: {self.context_size}")
|
|
logging.info(f"vocab_size: {self.vocab_size}")
|
|
|
|
def init_joiner(self, joiner_model_filename: str):
|
|
self.joiner = ort.InferenceSession(
|
|
joiner_model_filename,
|
|
sess_options=self.session_opts,
|
|
providers=["CPUExecutionProvider"],
|
|
)
|
|
|
|
joiner_meta = self.joiner.get_modelmeta().custom_metadata_map
|
|
self.joiner_dim = int(joiner_meta["joiner_dim"])
|
|
|
|
logging.info(f"joiner_dim: {self.joiner_dim}")
|
|
|
|
def run_encoder(
|
|
self,
|
|
x: torch.Tensor,
|
|
x_lens: torch.Tensor,
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
"""
|
|
Args:
|
|
x:
|
|
A 3-D tensor of shape (N, T, C)
|
|
x_lens:
|
|
A 2-D tensor of shape (N,). Its dtype is torch.int64
|
|
Returns:
|
|
Return a tuple containing:
|
|
- encoder_out, its shape is (N, T', joiner_dim)
|
|
- encoder_out_lens, its shape is (N,)
|
|
"""
|
|
out = self.encoder.run(
|
|
[
|
|
self.encoder.get_outputs()[0].name,
|
|
self.encoder.get_outputs()[1].name,
|
|
],
|
|
{
|
|
self.encoder.get_inputs()[0].name: x.numpy(),
|
|
self.encoder.get_inputs()[1].name: x_lens.numpy(),
|
|
},
|
|
)
|
|
return torch.from_numpy(out[0]), torch.from_numpy(out[1])
|
|
|
|
def run_decoder(self, decoder_input: torch.Tensor) -> torch.Tensor:
|
|
"""
|
|
Args:
|
|
decoder_input:
|
|
A 2-D tensor of shape (N, context_size)
|
|
Returns:
|
|
Return a 2-D tensor of shape (N, joiner_dim)
|
|
"""
|
|
out = self.decoder.run(
|
|
[self.decoder.get_outputs()[0].name],
|
|
{self.decoder.get_inputs()[0].name: decoder_input.numpy()},
|
|
)[0]
|
|
|
|
return torch.from_numpy(out)
|
|
|
|
def run_joiner(
|
|
self, encoder_out: torch.Tensor, decoder_out: torch.Tensor
|
|
) -> torch.Tensor:
|
|
"""
|
|
Args:
|
|
encoder_out:
|
|
A 2-D tensor of shape (N, joiner_dim)
|
|
decoder_out:
|
|
A 2-D tensor of shape (N, joiner_dim)
|
|
Returns:
|
|
Return a 2-D tensor of shape (N, vocab_size)
|
|
"""
|
|
out = self.joiner.run(
|
|
[self.joiner.get_outputs()[0].name],
|
|
{
|
|
self.joiner.get_inputs()[0].name: encoder_out.numpy(),
|
|
self.joiner.get_inputs()[1].name: decoder_out.numpy(),
|
|
},
|
|
)[0]
|
|
|
|
return torch.from_numpy(out)
|
|
|
|
|
|
def read_sound_files(
|
|
filenames: List[str], expected_sample_rate: float
|
|
) -> List[torch.Tensor]:
|
|
"""Read a list of sound files into a list 1-D float32 torch tensors.
|
|
Args:
|
|
filenames:
|
|
A list of sound filenames.
|
|
expected_sample_rate:
|
|
The expected sample rate of the sound files.
|
|
Returns:
|
|
Return a list of 1-D float32 torch tensors.
|
|
"""
|
|
ans = []
|
|
for f in filenames:
|
|
wave, sample_rate = torchaudio.load(f)
|
|
assert (
|
|
sample_rate == expected_sample_rate
|
|
), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}"
|
|
# We use only the first channel
|
|
ans.append(wave[0])
|
|
return ans
|
|
|
|
|
|
def greedy_search(
|
|
model: OnnxModel,
|
|
encoder_out: torch.Tensor,
|
|
encoder_out_lens: torch.Tensor,
|
|
) -> List[List[int]]:
|
|
"""Greedy search in batch mode. It hardcodes --max-sym-per-frame=1.
|
|
Args:
|
|
model:
|
|
The transducer model.
|
|
encoder_out:
|
|
A 3-D tensor of shape (N, T, joiner_dim)
|
|
encoder_out_lens:
|
|
A 1-D tensor of shape (N,).
|
|
Returns:
|
|
Return the decoded results for each utterance.
|
|
"""
|
|
assert encoder_out.ndim == 3, encoder_out.shape
|
|
assert encoder_out.size(0) >= 1, encoder_out.size(0)
|
|
|
|
packed_encoder_out = torch.nn.utils.rnn.pack_padded_sequence(
|
|
input=encoder_out,
|
|
lengths=encoder_out_lens.cpu(),
|
|
batch_first=True,
|
|
enforce_sorted=False,
|
|
)
|
|
|
|
blank_id = 0 # hard-code to 0
|
|
|
|
batch_size_list = packed_encoder_out.batch_sizes.tolist()
|
|
N = encoder_out.size(0)
|
|
|
|
assert torch.all(encoder_out_lens > 0), encoder_out_lens
|
|
assert N == batch_size_list[0], (N, batch_size_list)
|
|
|
|
context_size = model.context_size
|
|
hyps = [[blank_id] * context_size for _ in range(N)]
|
|
|
|
decoder_input = torch.tensor(
|
|
hyps,
|
|
dtype=torch.int64,
|
|
) # (N, context_size)
|
|
|
|
decoder_out = model.run_decoder(decoder_input)
|
|
|
|
offset = 0
|
|
for batch_size in batch_size_list:
|
|
start = offset
|
|
end = offset + batch_size
|
|
current_encoder_out = packed_encoder_out.data[start:end]
|
|
# current_encoder_out's shape: (batch_size, joiner_dim)
|
|
offset = end
|
|
|
|
decoder_out = decoder_out[:batch_size]
|
|
logits = model.run_joiner(current_encoder_out, decoder_out)
|
|
|
|
# logits'shape (batch_size, vocab_size)
|
|
|
|
assert logits.ndim == 2, logits.shape
|
|
y = logits.argmax(dim=1).tolist()
|
|
emitted = False
|
|
for i, v in enumerate(y):
|
|
if v != blank_id:
|
|
hyps[i].append(v)
|
|
emitted = True
|
|
if emitted:
|
|
# update decoder output
|
|
decoder_input = [h[-context_size:] for h in hyps[:batch_size]]
|
|
decoder_input = torch.tensor(
|
|
decoder_input,
|
|
dtype=torch.int64,
|
|
)
|
|
decoder_out = model.run_decoder(decoder_input)
|
|
|
|
sorted_ans = [h[context_size:] for h in hyps]
|
|
ans = []
|
|
unsorted_indices = packed_encoder_out.unsorted_indices.tolist()
|
|
for i in range(N):
|
|
ans.append(sorted_ans[unsorted_indices[i]])
|
|
|
|
return ans
|
|
|
|
|
|
@torch.no_grad()
|
|
def main():
|
|
parser = get_parser()
|
|
args = parser.parse_args()
|
|
logging.info(vars(args))
|
|
model = OnnxModel(
|
|
encoder_model_filename=args.encoder_model_filename,
|
|
decoder_model_filename=args.decoder_model_filename,
|
|
joiner_model_filename=args.joiner_model_filename,
|
|
)
|
|
|
|
logging.info("Constructing Fbank computer")
|
|
opts = kaldifeat.FbankOptions()
|
|
opts.device = "cpu"
|
|
opts.frame_opts.dither = 0
|
|
opts.frame_opts.snip_edges = False
|
|
opts.frame_opts.samp_freq = args.sample_rate
|
|
opts.mel_opts.num_bins = 80
|
|
|
|
fbank = kaldifeat.Fbank(opts)
|
|
|
|
logging.info(f"Reading sound files: {args.sound_files}")
|
|
waves = read_sound_files(
|
|
filenames=args.sound_files,
|
|
expected_sample_rate=args.sample_rate,
|
|
)
|
|
|
|
logging.info("Decoding started")
|
|
features = fbank(waves)
|
|
feature_lengths = [f.size(0) for f in features]
|
|
|
|
features = pad_sequence(
|
|
features,
|
|
batch_first=True,
|
|
padding_value=math.log(1e-10),
|
|
)
|
|
|
|
feature_lengths = torch.tensor(feature_lengths, dtype=torch.int64)
|
|
encoder_out, encoder_out_lens = model.run_encoder(features, feature_lengths)
|
|
|
|
hyps = greedy_search(
|
|
model=model,
|
|
encoder_out=encoder_out,
|
|
encoder_out_lens=encoder_out_lens,
|
|
)
|
|
s = "\n"
|
|
|
|
symbol_table = k2.SymbolTable.from_file(args.tokens)
|
|
|
|
def token_ids_to_words(token_ids: List[int]) -> str:
|
|
text = ""
|
|
for i in token_ids:
|
|
text += symbol_table[i]
|
|
return text.replace("▁", " ").strip()
|
|
|
|
for filename, hyp in zip(args.sound_files, hyps):
|
|
words = token_ids_to_words(hyp)
|
|
s += f"{filename}:\n{words}\n"
|
|
logging.info(s)
|
|
|
|
logging.info("Decoding Done")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
|
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
|
main()
|