mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
164 lines
4.5 KiB
Python
Executable File
164 lines
4.5 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
#
|
|
# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
# This script converts several saved checkpoints
|
|
# to a single one using model averaging.
|
|
|
|
import argparse
|
|
import logging
|
|
from pathlib import Path
|
|
|
|
import k2
|
|
import torch
|
|
from conformer import Conformer
|
|
|
|
from icefall.checkpoint import average_checkpoints, load_checkpoint
|
|
from icefall.lexicon import Lexicon
|
|
from icefall.utils import AttributeDict, num_tokens, str2bool
|
|
|
|
|
|
def get_parser():
|
|
parser = argparse.ArgumentParser(
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--epoch",
|
|
type=int,
|
|
default=34,
|
|
help="It specifies the checkpoint to use for decoding."
|
|
"Note: Epoch counts from 0.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--avg",
|
|
type=int,
|
|
default=20,
|
|
help="Number of checkpoints to average. Automatically select "
|
|
"consecutive checkpoints before the checkpoint specified by "
|
|
"'--epoch'. ",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--exp-dir",
|
|
type=str,
|
|
default="conformer_ctc/exp",
|
|
help="""It specifies the directory where all training related
|
|
files, e.g., checkpoints, log, etc, are saved
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--tokens",
|
|
type=str,
|
|
required=True,
|
|
help="Path to the tokens.txt.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--jit",
|
|
type=str2bool,
|
|
default=True,
|
|
help="""True to save a model after applying torch.jit.script.
|
|
""",
|
|
)
|
|
|
|
return parser
|
|
|
|
|
|
def get_params() -> AttributeDict:
|
|
params = AttributeDict(
|
|
{
|
|
"feature_dim": 80,
|
|
"subsampling_factor": 4,
|
|
"use_feat_batchnorm": True,
|
|
"attention_dim": 512,
|
|
"nhead": 8,
|
|
"num_decoder_layers": 6,
|
|
}
|
|
)
|
|
return params
|
|
|
|
|
|
def main():
|
|
args = get_parser().parse_args()
|
|
args.exp_dir = Path(args.exp_dir)
|
|
|
|
params = get_params()
|
|
params.update(vars(args))
|
|
|
|
logging.info(params)
|
|
|
|
# Load tokens.txt here
|
|
token_table = k2.SymbolTable.from_file(params.tokens)
|
|
|
|
num_classes = num_tokens(token_table) + 1 # +1 for the blank
|
|
|
|
device = torch.device("cpu")
|
|
if torch.cuda.is_available():
|
|
device = torch.device("cuda", 0)
|
|
|
|
logging.info(f"device: {device}")
|
|
|
|
model = Conformer(
|
|
num_features=params.feature_dim,
|
|
nhead=params.nhead,
|
|
d_model=params.attention_dim,
|
|
num_classes=num_classes,
|
|
subsampling_factor=params.subsampling_factor,
|
|
num_decoder_layers=params.num_decoder_layers,
|
|
vgg_frontend=False,
|
|
use_feat_batchnorm=params.use_feat_batchnorm,
|
|
)
|
|
model.to(device)
|
|
|
|
if params.avg == 1:
|
|
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
|
else:
|
|
start = params.epoch - params.avg + 1
|
|
filenames = []
|
|
for i in range(start, params.epoch + 1):
|
|
if start >= 0:
|
|
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
|
logging.info(f"averaging {filenames}")
|
|
model.load_state_dict(average_checkpoints(filenames))
|
|
|
|
model.to("cpu")
|
|
model.eval()
|
|
|
|
if params.jit:
|
|
logging.info("Using torch.jit.script")
|
|
model = torch.jit.script(model)
|
|
filename = params.exp_dir / "cpu_jit.pt"
|
|
model.save(str(filename))
|
|
logging.info(f"Saved to {filename}")
|
|
else:
|
|
logging.info("Not using torch.jit.script")
|
|
# Save it using a format so that it can be loaded
|
|
# by :func:`load_checkpoint`
|
|
filename = params.exp_dir / "pretrained.pt"
|
|
torch.save({"model": model.state_dict()}, str(filename))
|
|
logging.info(f"Saved to {filename}")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
|
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
|
main()
|