icefall/egs/libricss/SURT/prepare.sh

217 lines
7.4 KiB
Bash
Executable File

#!/usr/bin/env bash
set -eou pipefail
stage=-1
stop_stage=100
# We assume dl_dir (download dir) contains the following
# directories and files. If not, they will be downloaded
# by this script automatically.
#
# - $dl_dir/librispeech
# You can find audio and transcripts for LibriSpeech in this path.
#
# - $dl_dir/libricss
# You can find audio and transcripts for LibriCSS in this path.
#
# - $dl_dir/musan
# This directory contains the following directories downloaded from
# http://www.openslr.org/17/
#
# - music
# - noise
# - speech
#
# - $dl_dir/rirs_noises
# This directory contains the RIRS_NOISES corpus downloaded from https://openslr.org/28/.
#
dl_dir=$PWD/download
. shared/parse_options.sh || exit 1
# All files generated by this script are saved in "data".
# You can safely remove "data" and rerun this script to regenerate it.
mkdir -p data
vocab_size=500
log() {
# This function is from espnet
local fname=${BASH_SOURCE[1]##*/}
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
}
log "dl_dir: $dl_dir"
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
log "Stage 0: Download data"
# If you have pre-downloaded it to /path/to/librispeech,
# you can create a symlink
#
# ln -sfv /path/to/librispeech $dl_dir/librispeech
#
if [ ! -d $dl_dir/librispeech ]; then
lhotse download librispeech $dl_dir/librispeech
fi
# If you have pre-downloaded it to /path/to/libricss,
# you can create a symlink
#
# ln -sfv /path/to/libricss $dl_dir/libricss
#
if [ ! -d $dl_dir/libricss ]; then
lhotse download libricss $dl_dir/libricss
fi
# If you have pre-downloaded it to /path/to/musan,
# you can create a symlink
#
# ln -sfv /path/to/musan $dl_dir/
#
if [ ! -d $dl_dir/musan ]; then
lhotse download musan $dl_dir
fi
# If you have pre-downloaded it to /path/to/rirs_noises,
# you can create a symlink
#
# ln -sfv /path/to/rirs_noises $dl_dir/
#
if [ ! -d $dl_dir/rirs_noises ]; then
lhotse download rir-noise $dl_dir/rirs_noises
fi
fi
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
log "Stage 1: Prepare LibriSpeech manifests"
# We assume that you have downloaded the LibriSpeech corpus
# to $dl_dir/librispeech. We perform text normalization for the transcripts.
# NOTE: Alignments are required for this recipe.
mkdir -p data/manifests
log "This recipe uses mfa alignment for trimming"
if [ ! -d $dl_dir/libri_alignments/LibriSpeech ]; then
log "No alignment provided. please refer to ../../librispeech/ASR/add_alignments.sh \n \
for mfa alignments. Once you have downloaded and unzipped the .zip file containing \n \
all alignments, the folder should be renamed to libri_alignments and moved to your $dl_dir ."
exit 0
fi
lhotse prepare librispeech -p train-clean-100 -p train-clean-360 -p train-other-500 -p dev-clean \
-j 4 --alignments-dir $dl_dir/libri_alignments/LibriSpeech $dl_dir/librispeech data/manifests/
fi
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
log "Stage 2: Prepare LibriCSS manifests"
# We assume that you have downloaded the LibriCSS corpus
# to $dl_dir/libricss. We perform text normalization for the transcripts.
mkdir -p data/manifests
for mic in sdm ihm-mix; do
lhotse prepare libricss --type $mic --segmented $dl_dir/libricss data/manifests/
done
fi
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
log "Stage 3: Prepare musan manifest and RIRs"
# We assume that you have downloaded the musan corpus
# to $dl_dir/musan
mkdir -p data/manifests
lhotse prepare musan $dl_dir/musan data/manifests
# We assume that you have downloaded the RIRS_NOISES corpus
# to $dl_dir/rirs_noises
lhotse prepare rir-noise -p real_rir -p iso_noise $dl_dir/rirs_noises/RIRS_NOISES data/manifests
fi
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
log "Stage 4: Extract features for LibriSpeech, trim to alignments, and shuffle the cuts"
# python local/compute_fbank_librispeech.py
lhotse combine data/manifests/librispeech_cuts_train* data/manifests/librispeech_cuts_train_all.jsonl.gz
lhotse cut trim-to-alignments --type word --max-pause 0.2 \
data/manifests/librispeech_cuts_train_all.jsonl.gz \
data/manifests/librispeech_cuts_train_all_trimmed.jsonl.gz
cat <(gunzip -c data/manifests/librispeech_cuts_train_all_trimmed.jsonl.gz) | \
shuf | gzip -c > data/manifests/librispeech_cuts_train_trimmed.jsonl.gz
fi
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
log "Stage 5: Create simulated mixtures from LibriSpeech (train and dev). This may take a while."
# We create a high overlap set which will be used during the model warmup phase, and a
# full training set that will be used for the subsequent training.
gunzip -c data/manifests/libricss-sdm_supervisions_all.jsonl.gz |\
grep -v "0L" | grep -v "OV10" |\
gzip -c > data/manifests/libricss-sdm_supervisions_all_v1.jsonl.gz
gunzip -c data/manifests/libricss-sdm_supervisions_all.jsonl.gz |\
grep "OV40" |\
gzip -c > data/manifests/libricss-sdm_supervisions_ov40.jsonl.gz
# Warmup mixtures (100k) based on high overlap (OV40)
log "Generating 100k anechoic train mixtures for warmup"
lhotse workflows simulate-meetings \
--method conversational \
--fit-to-supervisions data/manifests/libricss-sdm_supervisions_ov40.jsonl.gz \
--num-meetings 100000 \
--num-speakers-per-meeting 2,3 \
--max-duration-per-speaker 15.0 \
--max-utterances-per-speaker 3 \
--seed 1234 \
--num-jobs 4 \
data/manifests/librispeech_cuts_train_trimmed.jsonl.gz \
data/manifests/lsmix_cuts_train_clean_ov40.jsonl.gz
# Full training set (2,3 speakers) anechoic
log "Generating anechoic set (full)"
lhotse workflows simulate-meetings \
--method conversational \
--fit-to-supervisions data/manifests/libricss-sdm_supervisions_all_v1.jsonl.gz \
--num-repeats 1 \
--num-speakers-per-meeting 2,3 \
--max-duration-per-speaker 15.0 \
--max-utterances-per-speaker 3 \
--seed 1234 \
--num-jobs 4 \
data/manifests/librispeech_cuts_train_trimmed.jsonl.gz \
data/manifests/lsmix_cuts_train_clean_full.jsonl.gz
fi
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
log "Stage 6: Compute fbank features for musan"
mkdir -p data/fbank
python local/compute_fbank_musan.py
fi
if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
log "Stage 7: Compute fbank features for simulated Libri-mix"
mkdir -p data/fbank
python local/compute_fbank_lsmix.py
fi
if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then
log "Stage 8: Add source feats to mixtures (useful for auxiliary tasks)"
python local/add_source_feats.py
log "Combining lsmix-clean and lsmix-rvb"
for type in full ov40; do
cat <(gunzip -c data/manifests/cuts_train_clean_${type}_sources.jsonl.gz) \
<(gunzip -c data/manifests/cuts_train_rvb_${type}_sources.jsonl.gz) |\
shuf | gzip -c > data/manifests/cuts_train_comb_${type}_sources.jsonl.gz
done
fi
if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then
log "Stage 9: Compute fbank features for LibriCSS"
mkdir -p data/fbank
python local/compute_fbank_libricss.py
fi
if [ $stage -le 10 ] && [ $stop_stage -ge 10 ]; then
log "Stage 10: Download LibriSpeech BPE model from HuggingFace."
mkdir -p data/lang_bpe_500
pushd data/lang_bpe_500
wget https://huggingface.co/Zengwei/icefall-asr-librispeech-pruned-transducer-stateless7-streaming-2022-12-29/resolve/main/data/lang_bpe_500/bpe.model
popd
fi