mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
379 lines
12 KiB
Bash
Executable File
379 lines
12 KiB
Bash
Executable File
#!/usr/bin/env bash
|
|
|
|
# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674
|
|
export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
|
|
|
|
set -eou pipefail
|
|
|
|
nj=15
|
|
stage=-1
|
|
stop_stage=11
|
|
perturb_speed=true
|
|
|
|
# We assume dl_dir (download dir) contains the following
|
|
# directories and files. If not, they will be downloaded
|
|
# by this script automatically.
|
|
#
|
|
# - $dl_dir/aishell
|
|
# You can find data_aishell, resource_aishell inside it.
|
|
# You can download them from https://www.openslr.org/33
|
|
#
|
|
# - $dl_dir/lm
|
|
# This directory contains the language model downloaded from
|
|
# https://huggingface.co/pkufool/aishell_lm
|
|
#
|
|
# - 3-gram.unpruned.arpa
|
|
#
|
|
# - $dl_dir/musan
|
|
# This directory contains the following directories downloaded from
|
|
# http://www.openslr.org/17/
|
|
#
|
|
# - music
|
|
# - noise
|
|
# - speech
|
|
|
|
dl_dir=$PWD/download
|
|
|
|
. shared/parse_options.sh || exit 1
|
|
|
|
# vocab size for sentence piece models.
|
|
# It will generate data/lang_bbpe_xxx,
|
|
# data/lang_bbpe_yyy if the array contains xxx, yyy
|
|
vocab_sizes=(
|
|
# 2000
|
|
# 1000
|
|
500
|
|
)
|
|
|
|
# All files generated by this script are saved in "data".
|
|
# You can safely remove "data" and rerun this script to regenerate it.
|
|
mkdir -p data
|
|
|
|
log() {
|
|
# This function is from espnet
|
|
local fname=${BASH_SOURCE[1]##*/}
|
|
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
|
|
}
|
|
|
|
log "dl_dir: $dl_dir"
|
|
|
|
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
|
|
log "stage 0: Download data"
|
|
|
|
# If you have pre-downloaded it to /path/to/aishell,
|
|
# you can create a symlink
|
|
#
|
|
# ln -sfv /path/to/aishell $dl_dir/aishell
|
|
#
|
|
# The directory structure is
|
|
# aishell/
|
|
# |-- data_aishell
|
|
# | |-- transcript
|
|
# | `-- wav
|
|
# `-- resource_aishell
|
|
# |-- lexicon.txt
|
|
# `-- speaker.info
|
|
|
|
if [ ! -d $dl_dir/aishell/data_aishell/wav/train ]; then
|
|
lhotse download aishell $dl_dir
|
|
fi
|
|
|
|
# If you have pre-downloaded it to /path/to/musan,
|
|
# you can create a symlink
|
|
#
|
|
# ln -sfv /path/to/musan $dl_dir/musan
|
|
#
|
|
if [ ! -d $dl_dir/musan ]; then
|
|
lhotse download musan $dl_dir
|
|
fi
|
|
fi
|
|
|
|
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
|
|
log "Stage 1: Prepare aishell manifest"
|
|
# We assume that you have downloaded the aishell corpus
|
|
# to $dl_dir/aishell
|
|
if [ ! -f data/manifests/.aishell_manifests.done ]; then
|
|
mkdir -p data/manifests
|
|
lhotse prepare aishell $dl_dir/aishell data/manifests
|
|
touch data/manifests/.aishell_manifests.done
|
|
fi
|
|
fi
|
|
|
|
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
|
|
log "Stage 2: Prepare musan manifest"
|
|
# We assume that you have downloaded the musan corpus
|
|
# to data/musan
|
|
if [ ! -f data/manifests/.musan_manifests.done ]; then
|
|
log "It may take 6 minutes"
|
|
mkdir -p data/manifests
|
|
lhotse prepare musan $dl_dir/musan data/manifests
|
|
touch data/manifests/.musan_manifests.done
|
|
fi
|
|
fi
|
|
|
|
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
|
|
log "Stage 3: Compute fbank for aishell"
|
|
if [ ! -f data/fbank/.aishell.done ]; then
|
|
mkdir -p data/fbank
|
|
./local/compute_fbank_aishell.py --perturb-speed ${perturb_speed}
|
|
touch data/fbank/.aishell.done
|
|
fi
|
|
fi
|
|
|
|
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
|
|
log "Stage 4: Compute fbank for musan"
|
|
if [ ! -f data/fbank/.msuan.done ]; then
|
|
mkdir -p data/fbank
|
|
./local/compute_fbank_musan.py
|
|
touch data/fbank/.msuan.done
|
|
fi
|
|
fi
|
|
|
|
lang_phone_dir=data/lang_phone
|
|
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
|
|
log "Stage 5: Prepare phone based lang"
|
|
mkdir -p $lang_phone_dir
|
|
|
|
(echo '!SIL SIL'; echo '<SPOKEN_NOISE> SPN'; echo '<UNK> SPN'; ) |
|
|
cat - $dl_dir/aishell/resource_aishell/lexicon.txt |
|
|
sort | uniq > $lang_phone_dir/lexicon.txt
|
|
|
|
./local/generate_unique_lexicon.py --lang-dir $lang_phone_dir
|
|
|
|
if [ ! -f $lang_phone_dir/L_disambig.pt ]; then
|
|
./local/prepare_lang.py --lang-dir $lang_phone_dir
|
|
fi
|
|
|
|
|
|
# Train a bigram P for MMI training
|
|
if [ ! -f $lang_phone_dir/transcript_words.txt ]; then
|
|
log "Generate data to train phone based bigram P"
|
|
aishell_text=$dl_dir/aishell/data_aishell/transcript/aishell_transcript_v0.8.txt
|
|
aishell_train_uid=$dl_dir/aishell/data_aishell/transcript/aishell_train_uid
|
|
find $dl_dir/aishell/data_aishell/wav/train -name "*.wav" | sed 's/\.wav//g' | awk -F '/' '{print $NF}' > $aishell_train_uid
|
|
awk 'NR==FNR{uid[$1]=$1} NR!=FNR{if($1 in uid) print $0}' $aishell_train_uid $aishell_text |
|
|
cut -d " " -f 2- > $lang_phone_dir/transcript_words.txt
|
|
fi
|
|
|
|
if [ ! -f $lang_phone_dir/transcript_tokens.txt ]; then
|
|
./local/convert_transcript_words_to_tokens.py \
|
|
--lexicon $lang_phone_dir/uniq_lexicon.txt \
|
|
--transcript $lang_phone_dir/transcript_words.txt \
|
|
--oov "<UNK>" \
|
|
> $lang_phone_dir/transcript_tokens.txt
|
|
fi
|
|
|
|
if [ ! -f $lang_phone_dir/P.arpa ]; then
|
|
./shared/make_kn_lm.py \
|
|
-ngram-order 2 \
|
|
-text $lang_phone_dir/transcript_tokens.txt \
|
|
-lm $lang_phone_dir/P.arpa
|
|
fi
|
|
|
|
if [ ! -f $lang_phone_dir/P.fst.txt ]; then
|
|
python3 -m kaldilm \
|
|
--read-symbol-table="$lang_phone_dir/tokens.txt" \
|
|
--disambig-symbol='#0' \
|
|
--max-order=2 \
|
|
$lang_phone_dir/P.arpa > $lang_phone_dir/P.fst.txt
|
|
fi
|
|
fi
|
|
|
|
lang_char_dir=data/lang_char
|
|
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
|
|
log "Stage 6: Prepare char based lang"
|
|
mkdir -p $lang_char_dir
|
|
# We reuse words.txt from phone based lexicon
|
|
# so that the two can share G.pt later.
|
|
|
|
# The transcripts in training set, generated in stage 5
|
|
cp $lang_phone_dir/transcript_words.txt $lang_char_dir/transcript_words.txt
|
|
|
|
cat $dl_dir/aishell/data_aishell/transcript/aishell_transcript_v0.8.txt |
|
|
cut -d " " -f 2- > $lang_char_dir/text
|
|
|
|
(echo '<eps> 0'; echo '!SIL 1'; echo '<SPOKEN_NOISE> 2'; echo '<UNK> 3';) \
|
|
> $lang_char_dir/words.txt
|
|
|
|
cat $lang_char_dir/text | sed 's/ /\n/g' | sort -u | sed '/^$/d' \
|
|
| awk '{print $1" "NR+3}' >> $lang_char_dir/words.txt
|
|
|
|
num_lines=$(< $lang_char_dir/words.txt wc -l)
|
|
(echo "#0 $num_lines"; echo "<s> $(($num_lines + 1))"; echo "</s> $(($num_lines + 2))";) \
|
|
>> $lang_char_dir/words.txt
|
|
|
|
if [ ! -f $lang_char_dir/L_disambig.pt ]; then
|
|
./local/prepare_char.py --lang-dir $lang_char_dir
|
|
fi
|
|
fi
|
|
|
|
if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
|
|
log "Stage 7: Prepare Byte BPE based lang"
|
|
|
|
for vocab_size in ${vocab_sizes[@]}; do
|
|
lang_dir=data/lang_bbpe_${vocab_size}
|
|
mkdir -p $lang_dir
|
|
|
|
cp $lang_char_dir/words.txt $lang_dir
|
|
cp $lang_char_dir/text $lang_dir
|
|
|
|
if [ ! -f $lang_dir/bbpe.model ]; then
|
|
./local/train_bbpe_model.py \
|
|
--lang-dir $lang_dir \
|
|
--vocab-size $vocab_size \
|
|
--transcript $lang_dir/text
|
|
fi
|
|
|
|
if [ ! -f $lang_dir/L_disambig.pt ]; then
|
|
./local/prepare_lang_bbpe.py --lang-dir $lang_dir
|
|
fi
|
|
done
|
|
fi
|
|
|
|
if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then
|
|
log "Stage 8: Prepare G"
|
|
|
|
mkdir -p data/lm
|
|
|
|
# Train LM on transcripts
|
|
if [ ! -f data/lm/3-gram.unpruned.arpa ]; then
|
|
python3 ./shared/make_kn_lm.py \
|
|
-ngram-order 3 \
|
|
-text $lang_char_dir/transcript_words.txt \
|
|
-lm data/lm/3-gram.unpruned.arpa
|
|
fi
|
|
|
|
# We assume you have installed kaldilm, if not, please install
|
|
# it using: pip install kaldilm
|
|
if [ ! -f data/lm/G_3_gram_char.fst.txt ]; then
|
|
# It is used in building HLG
|
|
python3 -m kaldilm \
|
|
--read-symbol-table="$lang_phone_dir/words.txt" \
|
|
--disambig-symbol='#0' \
|
|
--max-order=3 \
|
|
data/lm/3-gram.unpruned.arpa > data/lm/G_3_gram_phone.fst.txt
|
|
|
|
python3 -m kaldilm \
|
|
--read-symbol-table="$lang_char_dir/words.txt" \
|
|
--disambig-symbol='#0' \
|
|
--max-order=3 \
|
|
data/lm/3-gram.unpruned.arpa > data/lm/G_3_gram_char.fst.txt
|
|
fi
|
|
|
|
if [ ! -f $lang_char_dir/HLG.fst ]; then
|
|
./local/prepare_lang_fst.py \
|
|
--lang-dir $lang_char_dir \
|
|
--ngram-G ./data/lm/G_3_gram_char.fst.txt
|
|
fi
|
|
fi
|
|
|
|
if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then
|
|
log "Stage 9: Compile LG & HLG"
|
|
./local/compile_hlg.py --lang-dir $lang_phone_dir --lm G_3_gram_phone
|
|
./local/compile_hlg.py --lang-dir $lang_char_dir --lm G_3_gram_char
|
|
for vocab_size in ${vocab_sizes[@]}; do
|
|
lang_dir=data/lang_bbpe_${vocab_size}
|
|
./local/compile_hlg.py --lang-dir $lang_dir --lm G_3_gram_char
|
|
done
|
|
|
|
./local/compile_lg.py --lang-dir $lang_phone_dir --lm G_3_gram_phone
|
|
./local/compile_lg.py --lang-dir $lang_char_dir --lm G_3_gram_char
|
|
for vocab_size in ${vocab_sizes[@]}; do
|
|
lang_dir=data/lang_bbpe_${vocab_size}
|
|
./local/compile_lg.py --lang-dir $lang_dir --lm G_3_gram_char
|
|
done
|
|
fi
|
|
|
|
if [ $stage -le 10 ] && [ $stop_stage -ge 10 ]; then
|
|
log "Stage 10: Generate LM training data"
|
|
|
|
log "Processing char based data"
|
|
out_dir=data/lm_training_char
|
|
mkdir -p $out_dir $dl_dir/lm
|
|
|
|
if [ ! -f $dl_dir/lm/aishell-train-word.txt ]; then
|
|
cp $lang_phone_dir/transcript_words.txt $dl_dir/lm/aishell-train-word.txt
|
|
fi
|
|
|
|
# training words
|
|
./local/prepare_char_lm_training_data.py \
|
|
--lang-char data/lang_char \
|
|
--lm-data $dl_dir/lm/aishell-train-word.txt \
|
|
--lm-archive $out_dir/lm_data.pt
|
|
|
|
# valid words
|
|
if [ ! -f $dl_dir/lm/aishell-valid-word.txt ]; then
|
|
aishell_text=$dl_dir/aishell/data_aishell/transcript/aishell_transcript_v0.8.txt
|
|
aishell_valid_uid=$dl_dir/aishell/data_aishell/transcript/aishell_valid_uid
|
|
find $dl_dir/aishell/data_aishell/wav/dev -name "*.wav" | sed 's/\.wav//g' | awk -F '/' '{print $NF}' > $aishell_valid_uid
|
|
awk 'NR==FNR{uid[$1]=$1} NR!=FNR{if($1 in uid) print $0}' $aishell_valid_uid $aishell_text |
|
|
cut -d " " -f 2- > $dl_dir/lm/aishell-valid-word.txt
|
|
fi
|
|
|
|
./local/prepare_char_lm_training_data.py \
|
|
--lang-char data/lang_char \
|
|
--lm-data $dl_dir/lm/aishell-valid-word.txt \
|
|
--lm-archive $out_dir/lm_data_valid.pt
|
|
|
|
# test words
|
|
if [ ! -f $dl_dir/lm/aishell-test-word.txt ]; then
|
|
aishell_text=$dl_dir/aishell/data_aishell/transcript/aishell_transcript_v0.8.txt
|
|
aishell_test_uid=$dl_dir/aishell/data_aishell/transcript/aishell_test_uid
|
|
find $dl_dir/aishell/data_aishell/wav/test -name "*.wav" | sed 's/\.wav//g' | awk -F '/' '{print $NF}' > $aishell_test_uid
|
|
awk 'NR==FNR{uid[$1]=$1} NR!=FNR{if($1 in uid) print $0}' $aishell_test_uid $aishell_text |
|
|
cut -d " " -f 2- > $dl_dir/lm/aishell-test-word.txt
|
|
fi
|
|
|
|
./local/prepare_char_lm_training_data.py \
|
|
--lang-char data/lang_char \
|
|
--lm-data $dl_dir/lm/aishell-test-word.txt \
|
|
--lm-archive $out_dir/lm_data_test.pt
|
|
fi
|
|
|
|
|
|
if [ $stage -le 11 ] && [ $stop_stage -ge 11 ]; then
|
|
log "Stage 11: Sort LM training data"
|
|
# Sort LM training data by sentence length in descending order
|
|
# for ease of training.
|
|
#
|
|
# Sentence length equals to the number of tokens
|
|
# in a sentence.
|
|
|
|
out_dir=data/lm_training_char
|
|
mkdir -p $out_dir
|
|
ln -snf ../../../librispeech/ASR/local/sort_lm_training_data.py local/
|
|
|
|
./local/sort_lm_training_data.py \
|
|
--in-lm-data $out_dir/lm_data.pt \
|
|
--out-lm-data $out_dir/sorted_lm_data.pt \
|
|
--out-statistics $out_dir/statistics.txt
|
|
|
|
./local/sort_lm_training_data.py \
|
|
--in-lm-data $out_dir/lm_data_valid.pt \
|
|
--out-lm-data $out_dir/sorted_lm_data-valid.pt \
|
|
--out-statistics $out_dir/statistics-valid.txt
|
|
|
|
./local/sort_lm_training_data.py \
|
|
--in-lm-data $out_dir/lm_data_test.pt \
|
|
--out-lm-data $out_dir/sorted_lm_data-test.pt \
|
|
--out-statistics $out_dir/statistics-test.txt
|
|
fi
|
|
|
|
if [ $stage -le 12 ] && [ $stop_stage -ge 12 ]; then
|
|
log "Stage 11: Train RNN LM model"
|
|
python ../../../icefall/rnn_lm/train.py \
|
|
--start-epoch 0 \
|
|
--world-size 1 \
|
|
--num-epochs 20 \
|
|
--use-fp16 0 \
|
|
--embedding-dim 512 \
|
|
--hidden-dim 512 \
|
|
--num-layers 2 \
|
|
--batch-size 400 \
|
|
--exp-dir rnnlm_char/exp \
|
|
--lm-data $out_dir/sorted_lm_data.pt \
|
|
--lm-data-valid $out_dir/sorted_lm_data-valid.pt \
|
|
--vocab-size 4336 \
|
|
--master-port 12345
|
|
fi
|